Software Engineering for the Total Ship

This document has been edited to remove personally identifiable information iaw current DoD policy.

Abstract

The purpose of this paper is to foster dialogue between engineers and researchers in government and industry to explore better ways to engineer a ship. Because software is a crucial and omnipresent part of nearly every system on board a ship from the cook’s automated grocery list to the major weapon systems to the ship’s control, it is only logical that software be considered in the proceedings of this, and all similar, symposiums.
The development of software products has been subjected to intense study by experts in the field of software engineering who agree that success in software development consists of delivering a quality product on time and within budget. The keys to success are first, having good people, second, the effective use of technology, and third, process maturity. Managers understand the importance of having the brightest people developing software; they also understand the importance of giving those good people the right technologies with which to develop their products. However, process, the third element in this equation, is a relatively new concept in software engineering. The process used to develop software products is at least as important as the technology that goes into them and the people who build them. To assure good ship’s engineering, all three elements: people, technology, and process, must be incorporated into the software engineering effort.

Introduction

A Congressional investigation has found:

“... many recent examples of cost overruns and degraded capability cited as examples of Government waste, fraud and abuse can be related to problems in the development of computer software.” (SSTCOM89)

This “software crisis” is not unique to the Navy. Its existence and its impacts are shared across all of the Department of Defense (DoD) as well as industry. It is platform independent, exists regardless of mission, and is pervasive and colorblind. It is truly a “purple” phenomenon affecting all of DoD and its commercial counterparts. Nor are its solutions unique to any individual service, agency, or business. The services and their industry partners must now share the responsibility for solving this crisis as they shared in generating it. Many organizations are offering their success and failure stories, which are lessons learned for the others. It is in this spirit the highlights of these lessons learned, be they Navy’s or others, are presented in this paper. Also offered, are the opinions of many of our DoD leaders in the hope of conveying more than this author’s opinion, that is, a united concern and sense of urgency.

A 1987 report of the Defense Science Board Task Force in Military Software concludes:

“Software plays a major role in today’s weapon systems. The “smarts” of smart weapons are provided by software. Software is crucial to intelligence, communications, command, and control. Software enables computerized systems for logistics, personnel, and finance. The chief “military software problem” is that we cannot get enough of it, soon enough, reliable enough, and cheap enough to meet the demands of weapon systems designers and users. Software provides a major component of U.S. warfighting capability.” (DSB87)

This paper first explores the “software crisis” in an effort to describe the pervasiveness of software problems that could affect the execution of shipboard systems and the protection of the onboard warfighters. It then presents two current efforts underway to solve the crisis and, finally, suggests a role for those buying shipboard software systems to successfully engineer the total ship.

The Software Crisis

In April 1992, the Government Accounting Office (GAO) reported to Congress:

“The Navy’s F-14D aircraft cannot
meet its intended mission due in part to software problems... For example, defects in the F-14D’s embedded software caused cockpit displays to go blank and erroneous data to be supplied to the mission computer... As with other Mission-Critical Navy weapon systems, the F14-D’s effectiveness and readiness depend heavily on the proper functioning of its computer systems.” (GAO92)

Similar disturbing findings have been made throughout the Federal Government. Several GAO reports are summarized in Table 1.

TABLE 1.

GAO Reports on Software Failures (GUIDE96)

	GAO Report
	Report Findings

	Contracting for Computer Software Development: Serious Problems Require Management Attention to Avoid Wasting Additional Millions, November 9, 1979.
	Analysis of custom-built Management Information Systems (MIS) (163 contractors and 113 government personnel surveyed) produced the following results:

• 60% of contracts had schedule overruns

• 50% of contracts had cost overruns

• 45% of software could not be used

• 29% of software was never delivered

• 19% of software had to be reworked to be used

	Sergeant York: Concerns About the Army’s Accelerated Acquisition Strategy, May 1986.
	
• 64 (of planned 614) units delivered and subsequently scrapped

• Follow-On Test and Evaluation (FOT&E) results showed significant performance shortfalls

• Cost and schedule overruns projected if government demanded required functionality

• $1.8 billion lost

• Program canceled

	Navy Decision to Terminate Its Standard Automated Financial System, March 1989.
	
• $446.5 million (99.9%) projected cost overrun

• Five year projected schedule overrun

• $230 million lost

• Program canceled

	Embedded Computer Systems: Significant Software Problems on C-17 Must Be Addressed, May 1992.
	
• Two years behind schedule (as of March 1992)

• $1.5 billion cost overrun

• Software size/complexity underestimated

• Military Standards waived for contractor with limited software experience

• Shortcuts taken on software testing and supportability issues

	Air Traffic Control: Ad-vanced Automation System (AAS) Problems Need to Be Addressed, March 10, 1993.
	
• Five years behind schedule

• $2.6 billion cost overrun

• $238 million spent due to delays

TABLE 1 (Continued)
	GAO Report
	Report Findings

	Software Challenges in Mission-Critical Department of Defense (DoD) Systems, December 24, 1992.
	Fifteen major systems studied had the following common problems:

• Poor software engineering concepts, methods, and practices used

• Proceeded despite serious problems

• Requirements were ill-defined and unstable

• Architectures were inflexible

• Security requirements not met

• Poor testing methods and procedures used

• No system-level integration testing performed

	Attack Warning: Status of the Cheyenne Mountain Upgrade Program, September 1994.
	
• Eight years behind schedule (at time of report)

• $792 million over budget (at time of report)

• Eleven years projected schedule slip

• $896 million projected budget overrun

• $22 million/year additional costs for continued operation/maintenance of old system

	Comanche Helicopter: Testing Needs to be Completed Prior to Production Decisions, May 1995.
	
• Cost tripled in ten years (from $12.1 million in 1985 to $34.4 million in 1995, 185% cost increase)

• Software development and testing problems

• Required performance has been decreased by 74%

	Air Traffic Control: Status of FAA’s Modernization Program, May 1995. (Advanced Automation System (AAS) restructured)
	
• $5.6 billion cost overrun

• Eight year schedule slip

• Two of four systems canceled; third system reduced by 48%, restructured cost $6 billion

• Required capacity downgraded

In testimony before Congress in 1995, a Senior Defense and International Affairs Advisor to the Comptroller General of the United States, stated:

“Over the years, we have reported on the persistent problems that have plagued weapons acquisition. Many new weapons cost more, are less capable than anticipated, and experience schedule delays. These problems are typical of DoD’s history of inadequate requirements determinations for weapons systems; projecting unrealistic cost, schedule, and performance estimates; developing and producing weapons concurrently; and committing weapon systems to production before adequate testing has been completed.” (CONAHAN95)

A 1990 series of articles in the Washington Post stated:

“Software problems have caused major delays of weapons systems, created malfunctioning aircraft, and cost the Defense Department billions of dollars in unanticipated costs. Officials acknowledge that virtually every troubled weapon system, from the electronics of the B-1B bomber to satellite tracking systems, has been affected with software problems. Even straightforward record-keeping systems can get bogged down; last year the Navy canceled a software accounting project nine years in the making after its cost quadrupled to $230 million.” (RICHARDS90)

In the same series of articles, a Colonel (USAF), head of a Pentagon software research effort, reported on a study he had conducted on 82 large military procurement programs. Of those 82 systems, he found that programs relying heavily on software ran 20 months behind schedule -- three times longer than non-software-intensive programs. He calculated that those delays cost DoD one tenth of its $100 billion research and procurement budget. He explained, “The Department is paying a huge penalty for not dealing with its software problems. The penalty is not just late software -- it is degraded warfighting capability.” (RICHARDS90)

The Federal Government shares this alarming history with private industry. An article from Scientific American, October 1994, provides the following examples of software-related failures:

• The American Airlines upgrade to their SABRE system which was synopsized by Bill Curtis, then a consultant to the Software Engineering Institute as “a smashing failure, American wrote off $165 million against that system.”

• International Telegraph and Telephone canceled four switching systems for a loss of $500 million in the 1980s

• In 1987, The California Department of Motor Vehicles lost $30 million when they canceled the Automated Vehicle/Driver’s License System

• The State of Washington lost $20 million and seven years of effort when they had to cancel their Automated Social Service Caseworker System

• An IBM study of 24 leading companies developing large, distributed software-intensive systems showed that of all the software programs in those companies, 55% had cost overruns, 68% had schedule overruns, and 88% had to be redesigned to be used

• One third of all large-scale software programs are canceled

• The average software program overruns its schedule by 50%, larger programs usually higher

• Three fourths of all large-scale developments are operational failures (GIBBS94)

In yet another GAO report: New Denver Airport Impact of the Delayed Baggage System, October 1994. Denver International Airport (DIA) opening delayed by two years.

• $27 million cost overrun on baggage system

• $55 million spent by United Airlines to fix their portion of baggage system

• $51 million spent by City of Denver to cannibalize and haul manual system from old airport to new for other airlines

• $35 million projected to expand repaired automated system for airlines other than United

• $360 million total delay costs

• $37 million in DIA lost income

• $8 million in bond fees

• $20 user fee per enplaned DIA passenger tacked on to ticket price

This is, unfortunately, not an exhaustive list, nor an out-of-date accounting of one of the major challenges to DoD and the entire software community. These types of problems are continuing on a broad scale.
Exacerbating this “software crisis” is Year 2000. Almost all computer-based systems, worldwide, will be adversely affected by the arrival of the Year 2000, unless something is done to repair or replace these systems. It is estimated that the cost to correct this computer problem worldwide is over $600 billion, with the estimate for the Federal Government over $3 billion. Mandates have been issued from each of the services that all non-essential sustainment requirements and enhancements to a system will be deferred until after that system has been assessed, fixed, and certified as Year 2000 compliant. (DONY2K)

Regrettably, the findings, opinions, and recommendations in this section lead to a conclusion that there is a rising demand for on-time, in-budget, quality software in a time of falling budgets, failed procurements, and software development techniques that are no longer good enough. The way the Navy, and all DoD, acquires, develops, or maintains its software systems must change.

Reasons for the Software Crisis

To better understand the solutions requires a better understanding of the problems. Overwhelming evidence indicates that software programs fail for the following common reasons:

1. Software’s inherent complexity. Experts agree that software is hard and always will be. It has an inherent and necessary complexity. Fredrick P. Brooks, Jr. believes “Software entities are more complex... than perhaps any other human construct... (Because) the complexity of software is an essential property, it does not lend itself to simplification techniques found in other disciplines.” (GUIDE96)

2. Inability to estimate cost, schedule and size. “The fundamental reason software-intensive developments overrun cost and schedule, with resulting quality and performance shortfalls, is our inability to estimate. Many software managers do not know that research has shown that maintenance of a software system will consume 60% to 80% of the programmed software budget, and of that software budget, requirements make up 6%, design 28%, code and unit test 12%, integration and system test 10%, and rework 44%.” (BOEHM81)

Our software managers and engineers are generally not taught how to use estimation models and methods. Many estimates are based on guesses, especially in the development of unprecedented systems. Managers and contractors often make overly-optimistic estimates in the hopes of winning work or approval. When presented with the three requirements of 1) do it for this cost, 2) in this timeframe, 3) with this performance, sponsors often want to dictate all three. Software managers are forced to sacrifice on one, two, or all three.

3. Unstable requirements. One big cause of software program failures, upon which all the reports and studies undeniably concur, is requirements instability. Data collected from Rome Laboratory indicate that over 50% of all software errors are “requirements errors,” which are more expensive to correct the further they percolate throughout the life cycle. Corrections during the coding phase of errors inserted during requirements definition are approximately 50% more costly than corrections of errors inserted and corrected during the coding phase.

“The hardest single part of building a software system is deciding precisely what to build. No other part of the work so cripples the resulting system if done wrong. No other part is more difficult to rectify later.” (BROOKS87)

4. Poor problem solving and decision making, i.e. poor management. Software acquisitions fail because software management fails. Predictable cost, schedule, performance, and quality is a management challenge, not a technical one. Our managers are poorly trained because the software development process is misunderstood. (GUIDE96)

5. Immature and ad hoc development processes. The institutionalization of good software engineering processes will eliminate the first four reasons as well as increase productivity and reduce costs. Using processes is the focus of this paper.

No quick, easy solutions exist for these major, recurring, oft-repeated problems (GUIDE96), hence no silver bullets, but software engineers have done much to define and measure these reasons and suggest ways out of the “software crisis” spiral.

The Growing Importance of Software

Experts predict a substantial and rapid increase in the need for software. As an example, in a 1995 presentation to the DoD’s Software Technology Conference, Bill Curtis discussed the order of magnitude growth in our software: the A-7E had 16,000 words of programmable memory, the F/A-18A/B had 943,000, the A-6G had 1,689,000, and the F/A-18C/D had 2,258,000. (CURTIS95) And in the U.S. Manned Spaceflight program, the Apollo had upwards of 10 million instructions, the Space Shuttle close to 40 million, and predications for the Space Station put it at over 75 million instructions. (GIBBS94)

According to the Guidelines for Successful Acquisition and Management of Software Intensive Systems, “the U.S. Department of Defense spends an estimated $42 billion annually for the development and maintenance of its computer systems; only $7 billion of this sum buys hardware.” (GUIDE96) The DoD Fiscal Year 1998 Information Technology (IT) budget is $10.2 billion, for DoD Agencies $3.4 billion, Air Force $2.3 billion, Navy $2.2 billion, and Army $2 billion. Software is not an insignificant part of our nation’s defenses. (TINCH97)

The services agree that information technology is a requirement as important as any other for the ability of our warfighters to do their job. A Rear Admiral, USN (retired) believes:

“(The) revolution in military affairs has moved information and the requirement for information dominance in the joint battlespace to center stage in our thinking of modern warfare... we all know software is the key to success or failure in the information age.” (DAVIDSON96)
The Deputy Assistant Secretary of the Air Force for Science, Technology and Engineering says:

“The Air Force leadership defined a group of core competencies that define how air power will support our national objective. They are Air and Space Superiority, Global Attack, Rapid Global Mobility, Precision Engagement, and Agile Combat Support. Inherent to these competencies is the need to acquire, process, and distribute information in a timely and efficient manner. Recognizing the importance of this information component, the Air Force defined a sixth core competency -- Information Superiority. Information Superiority is not the sole domain of the Air Force; it is DoD-wide and is the biggest leveraging factor we have.” (HELLWIG97)
A Lt. General, USA states:

“Force XXI is the Army’s effort to define and implement our vision of a truly 21st century land force by leveraging information technology. Software is an enabler of Force XXI and an application of information technology as a military resource.” (GUENTHER96)
This, in an era of declining resources. A 1997 GAO report states that since fiscal 1995, DoD procurements decreased 52% from their peak in 1987. The Office of the Secretary of Defense states that during the Fiscal Year 1998 budget period, active duty personnel will decrease 34%, Selected Reserves will decline 24%, and DoD civilians will be reduced by 32% from the 1987 highs. (TINCH97) In an address to the Software Technology Conference in April 1996, retired Admiral William A. Owens stated:

“From my perspective, discussions about software and its use in military applications must include a discussion about the defense budget... Overall, it is a $250 billion annual budget that can be viewed as the budget of the world’s largest company...The top line is down by about 45% in real terms from 1988 to 1998... It is about 65% fixed and 35% variable. The 35% relates to ships, tanks, and airplanes and some software. The 65% relates to infrastructures; bases, labs, training facilities, etc. Remember, the top line comes down by 45%. You cannot get rid of the infrastructure as much as you need to, and therefore, there has to be a bill-payer... procurement. Although the top line has gone down approximately 45%, the procurement budget has gone down approximately 70%...And what is apparent is that if the budget goes down by 45%, you simply cannot take a 45% cut across all programs. Instead, we have taken a lot of vertical cuts. You have seen vertical cuts in the form of all F-111s, EF-111s, RF-4Cs, and A-6 aircraft being removed from Navy carriers and four classes of nuclear submarines and five classes of surface ships in the Navy being eliminated. We have never done that before.” (OWENS96)

What does Software Have to Do with Ship’s Engineering?

Because a ship is one of the most complex systems of systems supporting our warfighting capability, she demands scrupulous attention not only to each individual system on-board, but to each dependency, each interface, and each impact that the system has on other systems. Joint operability is already difficult, but made more so when each platform has systems which are internally non-compatible or not integrated. Systems engineering on the broadest level is critical for a ship to perform at full capacity. A failure to properly engineer a ship’s systems, whether it be before she leaves the yard for the first time, or as an upgrade anytime during her life span could be responsible for putting her crew in harm’s way. And because software is unseen and intangible, it is often dismissed as being less important than a piece of hardware. But, the realization that software is one of our most important systems is being realized from ship’s captains to sailors, from acquisition support offices to test and evaluation organizations, from system engineers to system installers. As such, particular attention must be paid to its development, implementation, maintenance, operation, and integration.

According to a Lt. General (USAF):

“To say software permeates every aspect of our lives, whether we are in the Air Force, or not, is an understatement. Software is the heart of all our modern information, transportation, and weapon systems. And there is a definite trend toward more software, as systems become more sophisticated. The F4-G of the late 1970s had 285,000 lines of code, the F-15C of the 1980s had 507,000 lines of code, and the still-to-be-produced F-22 will have more than 1.6 million lines of code running on board the aircraft.” (FAIRFIELD96)

However, to keep from adding more examples of failures due to software to the section above, analysis and understanding of the reasons for the “software crisis”, and proactive solutions to these findings, must be demanded and executed by those responsible for engineering the total ship.

The question is, with software in nearly every system aboard every ship, can an engineer responsible for the safety of the warfighters and the success of their mission, afford not to demand, seek, and actively participate in a solution to our software crisis?
Solutions to the Software Crisis

“From a Pentagon perspective, it is not the fact that software costs are growing annually and consuming more and more of our defense dollars that worries us. Nor is it the fact that our weapon systems and commanders are becoming more and more reliant on software to perform their mission. Our inability to predict how much a software system will cost, when it will be operational, and whether or not it will satisfy user requirements, is the major concern. What our senior managers and DoD leaders want most from us, is to deliver on our promises. They want systems that are on-time, within budget, that satisfy user requirements, and are reliable.” (then Deputy Assistant Secretary of the Air Force, Communications, Computers, and Support Systems) (GUIDE96)
“There have been exceptions to the general rule that software-intensive systems are doomed to failure. From these successes we have learned there are certain practices we can apply to our present acquisitions so that, they too, can succeed. The common threads among successful acquisitions consist in the use of improved, modern management techniques by both the buyer and supplier and include:”(GUIDE96)

• Good management

• Planning

• Continuous measurement, tracking, and control

• Understanding

Still as true as when it was written in September 1987 in the Report of the Task Force on Military Software, is the Defense Science Board’s conclusion that:

“Many previous studies have provided an abundance of valid conclusions and detailed recommendations. Most remain unimplemented... The big problems are not technical... today’s major problems with military software are not technical problems, but management problems. Hence, we call for... major re-examination and change of attitudes, policies, and practices concerning software acquisition.” (DSB87)

What has changed in the decade since those conclusions were reached by the Defense Science Board is the wider awareness, at all levels, that software is a critical, and costly, component of nearly all DoD systems and requires the attention, resources, and application of expertise of our brightest engineers. The major re-examination called for by the Defense Science Board has been initiated and is commonly referred to as “software engineering: the application of a systematic, disciplined, quantifiable approach to the development, operation and maintenance of software.” (GIBBS94)
In an effort to formalize this new approach to software, DoD recognized the need for organizations to define and assume this responsibility. One such organization is the Software Engineering Institute (SEI), a Federally-Funded Research and Development Center. The SEI was formed in 1984 to establish standards of excellence for software engineering and to accelerate the transition of advanced technology and methods into practice. Other such organizations were formed or given similar responsibilities, e.g., in 1992, a group of U. S. Navy program managers and software practitioners formed the Software Program Managers Network to identify what did and did not work in real-world software projects and to facilitate success by conveying this information to program managers.

People, Process, and Technology

Based on a consensus of these organizations and many experts in the field of software engineering, a software development organization’s chance of success depends first on having good people, i.e., an exceptional manager and an effective development team. Secondly, it depends on its effective use of technology. And, finally, success is directly tied to the software engineering processes they use. Of the three, talented people are, by far, the most important element of any software organization.

“People” refers to the attributes and expertise of the personnel responsible for managing, performing, or overseeing the development and maintenance of their software products. Management commitment and ability to hire and retain competent people are the most crucial elements in predicting an organization’s success. The more experience and training these people have, the more likely the organization’s success. But even the best professionals need a structured environment in which to do cooperative, coordinated work.

“Technology” refers to the domain knowledge, tools, languages, information, applications, and environments needed to develop and maintain software.

“Process” refers to the way people approach software development and maintenance. Process is a particular method of doing something, generally involving a number of steps or operations.

Organizations must strive for balance -- good software engineering processes; the proper, although not necessarily the most current, technology; and a competent management and their workforce. Any of the three that is missing will cause the stool to topple.

Much has been written and is known about the importance of having good people and the right technology. These are the areas with which managers are trained to deal. These are the areas upon which manager’s performance reviews are based. So, why Process?

What are Software Processes?

A software process defines what to do, but not necessarily how to do it and consists of methods, activities, plans, practices, procedures, and steps used to produce and maintain software. Examples of critical software processes include project planning and tracking, cost estimation, requirements management, quality assurance, peer reviews, and configuration management. A software process is the fiber which connects people to technology, and allows people to effectively use their technology. Process maturity is how well a process is defined, managed, measured, and controlled, and how effective it is. Software process maturity is an indicator of software development capability and a predictor of success.

In an article in Scientific American, Mary Shaw of Carnegie-Mellon points out that having a good, documented process is as important for the field of software engineering as for any other field of engineering. She says “Mature engineering fields codify proved solutions in handbooks so that even novices can consistently handle routine designs, freeing more talented practitioners for advanced projects. No such handbook yet exists for software, so mistakes are repeated on project after project, year after year.” (GIBBS94) And that is why the DoD is pushing, at very high levels, to document the software industry’s best practices, i.e., processes.

A man considered by many to be the founder of the software process movement, professes that the quality, and the predictability of that quality, of a software product is governed by the quality of the process used to develop it and says:

“one way to measure the capability of a software organization is to observe what it does in a crisis, that is when good practices are most important, and that is when software people often have the least guidance.” (HUMPHREY90)

Having well-defined processes means that everyone can benefit from someone else’s lessons learned. A defined process accomplishes the following:

• It provides the basis for examining and improving the software process

• It aids in establishing predictability

• It improves understanding of roles and dependencies

• It guides software personnel through orderly decisions

• It provides a smooth working framework

• It helps staff members to readily transition from one program to another (GUIDE96)

A defined process does not:

• Restrict creativity, but rather allows it by taking away the repetitive, often times mundane decisions

• Force complacency, as there is no “one right way” to implement a software process and the process itself is always begging for improvement

• Deflect recognition from the heroes and stars, as they are the ones responsible for establishing how well the process is written and implemented

• Provide instructions for how to do software development; a process defines what to do, not how to do it.

One of the projects of the SEI has been to provide the DoD with some way to characterize the capabilities of software development organizations and provide guidance on how to establish and improve software development processes. The result is the Capability Maturity Model, often times referred to simply as the CMM or the Software CMM. The CMM is useful and should always be interpreted in the context of the business needs of the organization, never as an exhaustive checklist written in stone. (PAULK97)

A developer of the CMM describes the CMM as a set of recommended practices in a number of key process areas that have been shown to enhance software development and maintenance capability. It was designed to help developers select process improvement strategies by determining their current process maturity and identifying the most critical issue to improving their software quality and process. As an organization gains in maturity, it institutionalizes its software process via policies, standards, and organizational structures. Continuous process improvement is based on many small, evolutionary steps
rather than revolutionary innovations. The CMM provides a framework for organizing these evolutionary steps into five maturity levels, shown in Table 2, that lay a framework for continuous process improvement. The levels also help an organization prioritize its improvement efforts. (PAULK93).

The Key Process Areas in Level 2 Repeatable and most in Level 3 Defined, are aimed at immediately solving the major reasons software projects fail as discussed above; they are project specific. The other Key Process Areas focus on the institutionalization and continuous improvements of processes across an entire organization.

Correlation between software project success and using the CMM was established in a Master’s Thesis done at the Air Force Institute of Technology in September 1995.

TABLE 2.

The SEI’s Capability Maturity Model
[image: image1.wmf]Level

Characteristic

Optimizing Continuous process Process change management

 (5) capability improvement Technology change management

 Defect prevention

Managed

 (4)

Defined Software process defined

 (3) and institutionalized to

 provide product quality

 control

Repeatable

 (2)

Initial

 (1)

Product quality planning; Software quality management

tracking of measured Quantitative process management

software process

Management oversight

and tracking project;

stable planning and

product baselines

Key Process Areas

Ad hoc (success

depends on heroes)

Software configuration management

Software quality assurance

Software subcontract management

Software project tracking

 &

oversight

Software project planning

Requirements management

"People"

Peer reviews

Intergroup coordination

Software product engineering

Integrated software management

Training program

Organization process definition

Organization process focus

Result

Productivity

& Quality

Risk

Productivity

& Quality

An excerpt from their report says:

“The aim of our research was to determine the nature of a correlation between the CMM rating and software development success... We were able to show correlation between CMM rating and the cost and schedule performance... We observed improved cost and schedule performance with increasing process maturity. Specifically, the least mature organizations were likely to have difficulty adhering to cost and schedule baselines... the more mature organizations were likely to have on-baseline cost and schedule performance... This study has validated a correlation between project success and CMM ratings.” (LAWLIS95)

The Software CMM defines five levels of software maturity, each building on successive foundations for increased software process capability. Other CMMs, patterned after the Software CMM, have been developed to assist the software community in improving the quality of software products in specific areas, and include: Systems Engineering CMM, Trusted CMM, Systems Security CMM, People CMM, Software Acquisition CMM, and a still-under-development Integrated Product CMM.

A second, but related, initiative to improve the predictability of the quality of our software, is spearheaded by the Software Program Managers Network. In July 1994, DoD established a department-wide Software Acquisition Best Practices Initiative to “improve and restructure our software acquisition management process.” The initiative has produced:

• Nine principal best practices for software management

• A software project control panel that provides the project manager and staff with key indicators of project status in three layers of increasingly-detailed metrics

• A “little yellow book” with questions that help program managers assess how well project management understands and addresses the key issues involved in conducting a successful project

• A set of software project caveats -- some worst practices to avoid

• A set of quantitative targets -- project stretch-goals and malpractice warning levels

• A project “sobriety test” to help determine if a project is sound (BROWN96)

The Nine Principal Best Practices, which share many attributes with, and are complementary to, the Key Process Areas of the CMM, are:

• Formal Risk Management

• Agreement on Interfaces

• Formal Inspections

• Metric-Based Scheduling and Management

• Binary Quality Gates at the Inch-Pebble Level

• Program-Wide Visibility of Progress vs. Plan

• Defect Tracking Against Quality Targets

• Configuration Management

• People-Aware Management Accountability

The CMM and the Nine Principal Best Practices are just two of the more widely accepted and practiced approaches to improving software quality within the Navy. Other models and initiatives are maturing every day, which is a very good indication that the “software crisis” is being downgraded to a tropical storm instead of a hurricane with gale force winds. According to one author:

“While many of those conditions (missed budgets and schedules, poor quality, unreasonable expectations) are still with us, we have changed from feeling that software is some kind of totally unmanageable beast to believing that under the right conditions we can manage it just as we have learned to manage other problematical situations in our universe.” (HUMPHREY90)

But, as there are many paths to the top of the mountain, the responsibility of Navy managers is to look at each of those paths (approaches), consider the resources, constraints, and requirements of their project, and choose the best path for their business.
The Guidelines for Successful Acquisition and Management of Software Intensive Systems offer a great synopsis of process-driven acquisition strategy:

P --
People

R --
Developer with a proven track Record

O --
Organizational commitment to the success of the program

C --
Software development Capability

E --
Software engineering Environment of a full set of facilities

S --
Developer’s Strategy/plan defines what and how work will be done

S --
Defined set of Standards for excellence in product and process (GUIDE96)

Software Process Improvement (SPI) is a defined set of tasks whose execution will result in improving the software process capabilities of an organization to produce software on-time, within budget, and of high quality. The SPI tasks themselves are procedures and techniques, which when implemented, will improve the current process used to develop software.

Return on Investment for Software Process Improvement

Improving and using software development processes will reduce effort, cost, development time, and the number of defects. This is the ideal solution because all management indicators improve. Improving a process takes time and resources and should not be considered a quick-fix. Applying a process-focused approach means that attention is focused on the process rather than the product which results in progressive, measurable improvement in the product. Improving the development process always achieves lower costs and higher quality. (GUIDE96)

In August 1994, the SEI measured the benefits of CMM-Based SPI by investigating 13 companies including DoD contractors, commercial organizations, and military organizations. A synopsis of their findings is shown in Table 3.

TABLE 3.

Business Case for SPI (from SEI report on 13 companies, August 1994) (HERBSLEB94)

	Category
	Range
	Median

	Total Yearly cost of SPI activities
	$49,000 - $1,202,000
	$245,000

	Years engaged in SPI
	1 - 9
	3.5

	Cost of SPI per software engineer
	$490 - $2,004
	$1375

	Productivity gain per year
	9% - 67%
	35%

	Early detection gain per year (defects dis-covered pre-test)
	6% - 25%
	22%

	Yearly reduction in time to market
	15% - 23%
	19%

	Yearly reduction in post-release defect reports
	10% - 94%
	39%

	Business value of investment in SPI (value returned on each dollar invested)
	4.0 - 8.8
	5.0

When asked at the 1997 Software Technology Conference the question “Which area of software process improvement has provided the greatest return on investment for your service over the last 10 years?”, the services provided the following answers:

A Dr., USN: “We have found a number of these areas (software process improvement and use of best practices) have exceptionally high payoff. Perhaps the process that typically possesses the highest leverage is formal inspections... With this, and other best practices, Raytheon Electronic Systems Division, in their work on Navy programs, reduced rework from 43% to under 8%.”

A Lt. Gen., USA: “This effort has been a significant advance for risk reduction for DoD... We believe that software developers with a demonstrated, mature software engineering capability... are more likely to perform the required work with a lesser degree of government oversight... As for our own Army organizations that develop or maintain software, we expect them to become as competitive and as effective as private sector developers.”

A Maj. Gen., USMC: “As a result of these efforts, we achieved an 84% reduction in source lines of code and were able to return $5 million to the general fund from software maintenance savings.”

A Lt. Gen., DISA: “Based on our experience, the greatest return on investment comes in Configuration Management and next in Quality Assurance. The combined effect that all the key process areas have on the software development process has given DISA its greatest return on investment.”

A Lt. Gen., USAF: “The use of the Software Engineering Institute Capability Maturity Model, with support from senior Air Force-level sponsors and improvements made in our software discipline, have increased work force productivity and reduced our reliance on “software heroes.” Air Force software units that make real organizational contributions are improving not only the schedule and performance factors but also the overall cost.” (STC97)

Among the services, the Air Force has shown the most gain from software process improvement efforts, most likely because in September 1991, a former deputy assistant secretary of the Air Force for communications, computers, and logistics challenged Air Force units to improve their software acquisition, development, and support processes. He did so by directing units to complete Software Engineering Institute Software Capability Maturity Model assessments by October 1994, perform follow-up assessments every two years, and achieve a CMM Level 3 by 1998. When the challenge first came out, all Air Force units were at Level 1. As of January 1997, Air Force units at each maturity level, compared to the overall profile of 542 software organizations tracked by the SEI is as follows:

Level

Air Force
SEI organizations

1 Initial

51%
67%

2 Repeatable
34%
20%

3 Defined
12%
12%

4 Managed
 2%
 1%

5 Optimized
 0%
 0.4% (COFFMAN97)

Return on Investment for CMM-Based software process improvement has recently been reported by the Oklahoma City Air Logistics Center at Tinker Air Force Base as 7.5-to-1. An investment of $1.5 million dollars resulted in a savings of $11.3 million. Defect Rates were reduced by 90% from the baseline project to the second project. Maintenance costs showed a 26% reduction in the average cost. And productivity had a tenfold increase from the baseline project to the most recent project. (BUTLER95)

The Navy Fleet Material Support Office, the first Navy Level 3 organization, reported a savings through the use of Formal Inspections alone of over $2 million and 41,222 hours. (CHASTAIN96)

The Ada programming language is considered to be an enabling technology for applying good software engineering. Three Navy systems, 1) The AN/BSY-2 Submarine Combat System for the USS Seawolf (SSN 21), 2) The Navy Computer and Telecommunications Area Master Station, Atlantic (NCTAMS LANT), and 3) The Fleet Interface for Navy Communications Processing and Routing, are all highly visible, widely recognized, and very successful in large part because of their institutionalization of good software engineering principles through their use of Ada.
Perhaps because of their early determination that software process improvement made good business sense, many industry software partners are showing very impressive return on investment statistics:

Software Systems Lab at Raytheon’s Equipment Division: Since the start of the process improvement effort for six of its major systems, Raytheon saved about $9.2 million of its nearly $115 million software development costs. By investing almost $1 million annually in process improvements, Raytheon achieved a 7.7:1 return on investment (a $4.48 million return on a $0.58 million investment) with 2:1 productivity gains. Raytheon says that it eliminated $15.8 million in rework costs (from 41% to 11%) on 15 programs tracked between 1988 and 1992. (GUIDE96)

Hughes Software Engineering Division: Their two-year program to raise their CMM Level from 2 to 3 cost the company roughly $400,000 (75 staffmonths), a 2% increase in division overhead. Hughes calculated that its initial return on investment amounted to $2 million annually, based on a 50% reduction in its cost-performance index (budgeted cost of work performed/actual cost). The return on this investment was 4.5:1. Hughes’ cost-performance index continued to improve through 1992, climbing from 0.97 to 1.02, to the point where, as a whole, their programs were under budget. (GUIDE96)

Motorola: Motorola has supplemented their Capability Maturity Model efforts with several of their own programs, including its Sigma Six Quality focus and the 10X cycle-time initiative. The total of all process improvement activities was approximately a 1.5% investment of their base staffing. Based on defect injection rates, they calculated a resulting return on investment of 677%. But, given the nature of their contracts, they did not realize all these savings in profits. The true cost benefit occurs when projects finish earlier, freeing engineering resources to pursue the acquisition and development of new business. (SLIGO97)

Boeing: A Level 5 organization, Boeing did not start out using the CMM, but rather documented its software development practices as a matter of good business. It wasn’t until July 1996, when a CMM-Based appraisal was done, that they were officially recognized as a Level 5 organization. They write that the inspections continue to be the single most effective method of reducing defects. In their application, defects were reduced by 85%. Emphasis was also placed on cycle-time reduction and productivity improvements. Cycle time was reduced up to 50% and productivity was increased by 240%. The cost-to-benefit ratio of 1:7 was realized and significant cost underruns resulted. The customer and employee satisfaction were excellent with 99% and 96% ratings, respectively. (YAMAMURA97)

Lockheed: In 1990, 30 Lockheed projects of 500,000 lines of code were evaluated. The conclusions are presented in Table 4.

TABLE 4.

Process Maturity Payoff (based on 30 Lockheed projects of 500,000 Lines of Code *)
	Maturity
Level
	Quality (Defects/KSLOC)
	Productivity (LOC/Hr)
	Total
Cost
	Cost/ LOC
	Development Time (Mos)

	REAL DATA:

1- Ad Hoc
	 9 +
	1
	$33M
	$66
	40

	2 - Repeatable
	3
	3
	$15M
	$30
	32

	3 - Defined
	1
	5
	$ 7M
	$14
	25

	EXTRAPOLATED DATA

4 - Managed
	 0.3
	8
	$ 3M
	$ 6
	19

	5 - Optimized
	<0.1
	12
	$ 1M
	$ 2
	16

* copyright 1990 (KRASNER95)

 Other benefits from launching a successful software process improvement program are widely documented throughout the references for this paper (to include (BRODMAN96)), and include:

• Improved morale and confidence of employees

• Increased attention, respect, and business opportunities from organizations external to the software development organization

• Less overtime, less employee turnover, increased attraction for new hires

• Improved competitive advantage

• Increased cooperation between functional groups

• Increased management visibility and control

• Increased customer satisfaction

Culture change for solutions

The founder and executive director of the Software Program Managers Network, suggests:

“First, we must change our mindset. Software organizations must move from a checklist mentality and a quest for the silver bullet to a process where proven practices are the foundation for management. The focus must turn to the bottom line: productivity, quality, timeliness, and user satisfaction. Process improvement efforts must directly address and accomplish these fundamentals. Second... government contracting incentives must be overhauled... Third, many project managers would greatly benefit from becoming more familiar with key management techniques and issues. (BROWN96)
A former Deputy Assistant Secretary of the Air Force gives an opinion that:

“Although we have come a long way... we have not arrived, but we have largely moved, at least conceptually, beyond the day when entrepreneurs (i.e., brilliant programmers) were relied upon to develop and deliver satisfactory software systems. At the midpoint of the 1990s, software engineering and associated elements of software process maturity have come to be more the norm. There are many good Level 2 (based on the CMM) contractors. In our acquisitions we are now looking, not just to see if a contractor is a Level 3, but also at how close he is to a Level 4! Contractors and program offices are generating metrics and using them for management. We now have the means to progress into an era of predictable development of large-scale software-intensive systems.” And he offers the advice that we must continue to use proven software technologies such as reuse, COTS, Ada language, Object-Oriented, and architecture-based-product-lines. (GUIDE96)
The 1987 Defense Science Board Task Force on Military Software recommends:

• DoD should assume software requirements can be met with COTS subsystems and components

• DoD management should commit to a serious and determined push to Ada

• DoD should develop metrics and measuring techniques

• DoD should examine and revise regulations to approach modern commercial practice (Note: only commercial practices which enhance the common thread attributes of successful programs should be adopted)

• DoD should mandate the iterative setting of specifications, the rapid prototyping of specified systems, and incremental development

• DoD should mandate the use of risk management techniques in software acquisition

• DoD should develop economic incentives for contractors to offer modules for reuse and to buy modules rather than building new ones

• DoD should enhance education for software personnel (DSB87)
The 1994 Defense Science Board goes on to recommend:

• Establishing mechanisms to allow both current ability to perform and past performance as key factors in source selection

• Defining software architectures to enable rapid changes and reuse

• Facilitating early system engineering and iterative development

• Requiring program managers to stay with programs at least through beta testing to maintain continuity and understanding of original requirement nuances.(DSB94)
A 1992 Software Process Action Team Report suggests organizational changes; changes to standards, regulations, and other implementation vehicles; improved training; use of better metrics; improved funding estimates; adhering to current best practices; and identifying outstanding risk areas. The report also recommends the use of formal methodologies, phased development, and bidding to an open schedule to establish realistic schedules and baselines; higher user involvement in requirements definition and on-going communications; a clearly-defined systems engineering process; improved specifications with a focus on requirements allocation, derivation, and traceability; and enhancement of the program management activities, such as reviews. (PAT92)

DoD Directive 5000.1 (Defense Acquisition) states “It is critical that software developers have a successful past performance record, experience in the software domain or product line, a mature software development process, and evidence of use and adequate training in software methodologies, tools, and environments.” (DOD5000.1)
DoD Directive 5000.2-R (Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information Systems (MAIS) Acquisition Programs) states “Software shall be managed and engineered using best processes and practices that are known to reduce cost, schedule, and technical risk.” (DOD5000.2)

Another offers that “a disciplined, consistent effort to develop, propagate, and exploit the following suggestions should yield an order of magnitude improvement:

• Buy software, rather than build it

• Grow software, don’t build it

• Employ and cultivate the best and the brightest” (BROOKS87)
“A fully Ada-compliant program, the F-22 is, thus far, an excellent example of how to acquire and manage a major software-intensive system. Acting on lessons learned from prior acquisitions, the F-22 procurement strategy was designed to avoid past mistakes by placing special attention on software risk. This strategy includes:

• early assessment of contractor software development maturity

• a commitment to event-driven, rather than schedule-driven milestones

• use of integrated product teams to facilitate early identification and correction of problems

• use of Ada

• use of a common software engineering environment

• preparation of comprehensive Software Development Plans that define rigorous quality assurance, risk management, the collection of software cost and quality metrics to track progress, and a commitment by team members to follow and enforce the plan.

The reason the F-22 software program is on track is the contractor team is using a standard set of Ada tools and proven, defined development processes.” (GUIDE96)

The Boeing 777 has complete fly-by-wire cockpit controls, has the most powerful engines ever built for an airliner, and was extensively tested and designed from scratch exclusively by software. Boeing’s process emphasized communication and teamwork and was the first time Boeing has included its airline customers and suppliers as members of its design teams. (GUIDE96)

This sampling of opinions and lessons learned from top leaders in DoD and from the software engineering industry’s brightest, gives hope and assurance that there is indeed a way out of the stormy “software crisis.”
What is the Ship Engineer’s Role?

The role is simple and powerful:

1. Demand, expect, and track the use of good software engineering principles by any person or organization providing the ship with any kind of software product; insist on buying the process as well as the product

2. Get involved, understand what good software engineering principles are, and practice them. Don’t sit on a 2 legged stool, that is, don’t just rely on good people and technology; apply process.

If the assumption that misinterpretation of user requirements is a major contributor to software failure is true, then user involvement is a critical first step to assuring delivery of smart software to a ship’s systems. A smart, involved buyer must stress bringing software suppliers on-board who have:

“• the most skilled, experienced workforce

• a proven track record in developing software of similar size, complexity, and application domain

• top-level management commitment to a software success

• a mature development process and capability

• a robust, proven, automated, and appropriately-scaled software engineering environment

• a well-designed, implementable plan

• a defined, established set of standards to guide and control the development effort

• familiarity with the application domain (e.g., there is some ‘precedence’ knowledge for the application)” (GUIDE96)

The software engineering industry is fortunate for all the attention it is receiving, and the successes that are starting to come from implementing the recommendations from some of its brightest. There are many suggestions for what to do to ensure more predictable high quality software systems; the challenge is to how best to accomplish this goal in a particular environment.
The next steps are easy: begin, or continue, to learn about and understand software engineering. The following three sources are highly recommended as a place to start, all free of charge:

1. Obtain a copy of Guidelines for Successful Acquisition and Management of Software Intensive Systems: Weapon Systems, Command and Control Systems, Management Information Systems from

Software Technology Support Center

Ogden ALC/TISE

7278 Fourth Street

Hill AFB, Utah 84056-5205

(801) 777-8045

email: custserv@software.hill.af.mil

2. Subscribe to Crosstalk, the DoD Journal of Software Engineering, also from the Software Technology Support Center or view it on-line at http://stsc.hill.af.mil/crosstalk/crosstalk.html

3. Visit http://sepo.spawar.navy.mil which was developed by the author’s office.

Conclusion

The “software crisis” has already impacted many ship systems. But many great minds are finding good ways to help temper the storm and provide reliable methods for increasing the predictability of producing quality software. Utmost in the solution is obtaining and retaining the best people possible. Secondly, those people must be provided with the appropriate technology. And finally, both buyer and software development organizations must insist on the use of good software engineering principles, i.e., processes, and actively support and participate in the application of these software engineering principles to the systems on every ship.

This paper was born out of the efforts of the Software Engineering Process Office at the SPAWAR Systems Center San Diego, which believes and practices these tenets. Software is a major part of many systems which the center acquires, develops, or maintains. The Center’s software engineering goals include:

• Produce software in shorter development cycles

• Reduce the costs of supporting software throughout the life cycle

• Rapidly introduce new technology into the product and the software development process

• Integrate software across traditional system boundaries to provide a composite set of capabilities to the end user

• Improve the quality of software products

References

(BOEHM81) Software Engineering Economics, Prentice Hall Inc., 1981

(BRODMAN96) Return on Investment From Software Process Improvement As Measured By U.S. Industry, Crosstalk, April 1996

(BROWN96) Industrial-Strength Management Strategies, Crosstalk, August 1996

(BROOKS87) No Silver Bullet: Essence and Accidents of Software Engineering, Computer, April 1987

(BUTLER95) The Economic Benefits of Software Process Improvement, Crosstalk, July 1995

 (CHASTAIN96) Attaining and Sustaining Level III, Presentation made to SPAWAR Systems Center San Diego, June 1996

(COFFMAN97) Air Force Software Process Improvement Report, Crosstalk, January 1997

(CONAHAN95) Defense Programs and Spending: Need for Reforms, Testimony Before the Committee on the Budget, House of Representatives, GAO/T-NSAID-95-149, April 27, 1995

(CURTIS95) Building a Cost-Benefit Case for Software Process Improvement, Presentation the Software Technology Conference, 1995

(DAVIDSON96) Department of the Navy Joint Service Software Perspective, Crosstalk, June 1996

 (DOD5000.1) Department of Defense Directive 5000.1 Defense Acquisition, March 15, 1996

 (DOD5000.2) Department of Defense Directive 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAP) and Major Automated Information Systems (MAIS) Acquisition Programs, March 15, 1996

(DONY2K) Department of the Navy Chief Information Officer’s Year 2000 Home Page, http://www.doncio.navy.mil/y2k/year2000.htm, 1997

(DSB87) Office of the Under Secretary of Defense for Acquisition, Report of the Defense Science Board Task Force on Military Software, September 1987

(DSB94) Office of the Under Secretary of Defense for Acquisition & Technology, Report of the Defense Science Board Task Force on Acquiring Defense Software Commercially, June, 1994

(FAIRFIELD96) The Air Force Software Perspective, Crosstalk, October 1996

(GAO92) General Accounting Office, Embedded Computer Systems: F-14D Aircraft Software Is Not Reliable, GAO/IMTEC-92-21, April 1992

(GIBBS94) Software’s Chronic Crisis, Scientific American, September 1994

(GUENTHER96) Department of the Army Joint Service Software Perspective, Crosstalk, July 1996

(GUIDE96) Department of the Air Force, Guidelines for Successful Acquisition and Management of Software-Intensive Systems: Weapon Systems Command and Control Systems, Management Information Systems, June 1996

(HERBSLEB94) Benefits of CMM-Based Software Process Improvement: Initial Results, Software Engineering Institute Technical Report CMU/SEI-94-TR-13, August 1994

(HELLWIG97) Information Dominance Through Software Technology, Crosstalk, June 1997

(HUMPHREY90) Managing the Software Process, Addison-Wesley Publishing Company, Reading, Massachusetts, 1990

 (KRASNER95) Software Maturity Payoff, Presentation made to Software Technology Conference, April 1995

(LAWLIS95) A Correlational Study of the CMM and Software Development Performance, Crosstalk, September 1995

(OWENS96) Integrating People, Process, and Technology, Crosstalk, May 1996

(PAT92) Air Force Systems Command, Software Process Action Team Final Report: Process Improvement for Systems/Software Acquisition, June 30, 1992

(PAULK93) Capability Maturity Model, Version 1.1, IEEE Software, July 1993

(PAULK97) Software Process Proverbs, Crosstalk, January 1997

(RICHARDS90) Society’s Demands Push Software to Upper Limits: More Computer Crisis Likely and Pentagon Finds High-Tech Projects Hard to Manage: The Army Still Awaits Computerized Battlefield, The Washington Post, December 9&11, 1990

(SLIGO97) How Software Process Improvement Helped Motorola, IEEE Software September/October 1997

(SSTCOM89) Staff of the Subcommittee on Investigations and Oversight report submitted to the Committee on Science, Space, and Technology; U. S. House of Representatives, Bugs in the Program: Problems in Federal Government Computer Software Development and Regulation, September 1989

(STC97) Question and Answer General Session Continuation with the Ninth Annual Software Technology Conference Co-Sponsors, Crosstalk, October 1997

(TINCH97) The Cohen Act of 1996: The Promise and The Challenge, Crosstalk, September 1997

(YAMAMURA97) World Class Practices of Boeing’s Space Transportation Systems Organization, Presentation made to Software Technology Conference, April 1997

AcknowledgementS

Since this paper compiles much already investigated, analyzed, and published data, the author, in grateful appreciation, acknowledges all the outstanding efforts of the unknowing contributors, especially the folks at the Software Technology Support Center for their persistently good work in promoting Software Process Improvement. Special recognition goes to all members, past and present, of the Software Engineering Process Office at the SPAWAR Systems Center San Diego.

1
Feb. 23, 1998

