

REUSE

ADAPTATION and MANAGEMENT (RAM)

A PROCESS DEFINITION

18 APRIL 1997

VERSION 1.0

Software Engineering Process Office (SEPO), Code D13

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
Research, Development, Test and Evaluation Division (RDT&E DIV)
53560 Hull Street
San Diego CA 92152-5001
FOREWORD
This document provides Reuse Adaptation and Management (RAM) guidance for enhancing the "Defined" level on the Software Engineering Institute's (SEI's) Capability Maturity Model and meeting Department of Defense (DoD) guidelines. The doucment is focused on supporting NRaD Divisions in adopting a reuse perspective. To that end the document contains information on understanding the technical environment for reuse, required software engineering practices, roles and responsibilities of the organization, software-related groups (including software developers), and project managementís role in RAM activities.

�RECORD OF CHANGES
�CHANGE�NUMBER��DATE�NUMBER OF FIGURE, TABLE OR PARAGRAPH�A*�M�D��TITLE OR BRIEF DESCRIPTION�CHANGE�REQUEST�NUMBER��
*A - ADDED M - MODIFIED D - DELETED
�table of contents

� TOC \o "1-4" �1. INTRODUCTION	� GOTOBUTTON _Toc394997569 � PAGEREF _Toc394997569 �
1-1
��
1.1 PURPOSE	� GOTOBUTTON _Toc394997570 � PAGEREF _Toc394997570 �
1-1
��
1.2 BACKGROUND	� GOTOBUTTON _Toc394997571 � PAGEREF _Toc394997571 �
1-1
��
1.3 SCOPE	� GOTOBUTTON _Toc394997572 � PAGEREF _Toc394997572 �
1-1
��
1.4 DOCUMENT OVERVIEW	� GOTOBUTTON _Toc394997573 � PAGEREF _Toc394997573 �
1-1
��
1.5 REFERENCED DOCUMENTS	� GOTOBUTTON _Toc394997574 � PAGEREF _Toc394997574 �
1-2
��
1.6 ACRONYMS AND TERMS	� GOTOBUTTON _Toc394997575 � PAGEREF _Toc394997575 �
1-3
��
2. TECHNICAL FOUNDATIONS FOR REUSE	� GOTOBUTTON _Toc394997576 � PAGEREF _Toc394997576 �
2-1
��
2.1 ARCHITECTURAL REFERENCE MODEL	� GOTOBUTTON _Toc394997577 � PAGEREF _Toc394997577 �
2-1
��
2.1.1 Right View (Principal Layers)	� GOTOBUTTON _Toc394997578 � PAGEREF _Toc394997578 �
2-1
��
2.1.2 The Top View (Application SOURCES)	� GOTOBUTTON _Toc394997579 � PAGEREF _Toc394997579 �
2-2
��
2.1.3 The Left View (The Implementation Concepts)	� GOTOBUTTON _Toc394997580 � PAGEREF _Toc394997580 �
2-2
��
2.1.3.1 Application Interface Categories	� GOTOBUTTON _Toc394997581 � PAGEREF _Toc394997581 �
2-2
��
2.1.3.2 'State of the Practice' Application Program Interfaces	� GOTOBUTTON _Toc394997582 � PAGEREF _Toc394997582 �
2-3
��
2.1.3.3 The Joint Technical Architecture (JTA)	� GOTOBUTTON _Toc394997583 � PAGEREF _Toc394997583 �
2-3
��
2.1.4 The Need for an Object Based Paradigm	� GOTOBUTTON _Toc394997584 � PAGEREF _Toc394997584 �
2-4
��
2.2 REUSE APPROACH OVERVIEW	� GOTOBUTTON _Toc394997585 � PAGEREF _Toc394997585 �
2-4
��
3. ORGANIZING FOR REUSE	� GOTOBUTTON _Toc394997586 � PAGEREF _Toc394997586 �
3-1
��
3.1 ESTABLISH PLANS AND POLICY	� GOTOBUTTON _Toc394997587 � PAGEREF _Toc394997587 �
3-1
��
3.1.1 Organization Domain Analysis (AC-7)	� GOTOBUTTON _Toc394997588 � PAGEREF _Toc394997588 �
3-1
��
3.1.2 Plans, Policies, and Procedures (AC-1)	� GOTOBUTTON _Toc394997589 � PAGEREF _Toc394997589 �
3-1
��
3.2 ASSIGN RESPONSIBILITY	� GOTOBUTTON _Toc394997590 � PAGEREF _Toc394997590 �
3-2
��
3.2.1 Define intra-organizational requirements by position	� GOTOBUTTON _Toc394997591 � PAGEREF _Toc394997591 �
3-2
��
3.2.1.1 The Software Engineering Process Group	� GOTOBUTTON _Toc394997592 � PAGEREF _Toc394997592 �
3-2
��
3.2.1.2 Domain Manager	� GOTOBUTTON _Toc394997593 � PAGEREF _Toc394997593 �
3-2
��
3.2.1.3 Sub Domain Managers (AB-3)	� GOTOBUTTON _Toc394997594 � PAGEREF _Toc394997594 �
3-3
��
3.2.1.4 Reuse Resources Systems Administrator (AB-1)	� GOTOBUTTON _Toc394997595 � PAGEREF _Toc394997595 �
3-3
��
3.3 ENSURE ADEQUATE RESOURCES (AB-2)	� GOTOBUTTON _Toc394997596 � PAGEREF _Toc394997596 �
3-3
��
3.4 PROVIDE REUSE ENGINEERING TRAINING (AB-4, AB-5)	� GOTOBUTTON _Toc394997597 � PAGEREF _Toc394997597 �
3-4
��
4. REUSE PROCESS DEFINITION	� GOTOBUTTON _Toc394997598 � PAGEREF _Toc394997598 �
4-1
��
4.1 ORGANIZATION LEVEL REUSE PROCESS	� GOTOBUTTON _Toc394997599 � PAGEREF _Toc394997599 �
4-1
��
4.2 DOMAIN STANDARDS SPECIFICATION PROCESS (AC-1, AC-3, AC-9)	� GOTOBUTTON _Toc394997600 � PAGEREF _Toc394997600 �
4-1
��
4.2.1 The Domain Reference Model	� GOTOBUTTON _Toc394997601 � PAGEREF _Toc394997601 �
4-1
��
4.2.2 The API	� GOTOBUTTON _Toc394997602 � PAGEREF _Toc394997602 �
4-1
��
4.2.3 Define Domain Software Engineering Standards	� GOTOBUTTON _Toc394997603 � PAGEREF _Toc394997603 �
4-2
��
4.2.3.1 Requirements	� GOTOBUTTON _Toc394997604 � PAGEREF _Toc394997604 �
4-3
��
4.2.3.2 Design	� GOTOBUTTON _Toc394997605 � PAGEREF _Toc394997605 �
4-3
��
4.2.3.3 Code	� GOTOBUTTON _Toc394997606 � PAGEREF _Toc394997606 �
4-3
��
4.2.3.4 Test	� GOTOBUTTON _Toc394997607 � PAGEREF _Toc394997607 �
4-4
��
4.2.4 Define Reuse Centric Software Development Process	� GOTOBUTTON _Toc394997608 � PAGEREF _Toc394997608 �
4-4
��
4.2.5 Develop a Project Plan	� GOTOBUTTON _Toc394997609 � PAGEREF _Toc394997609 �
4-4
��
4.3 REUSE-CENTRIC SOFTWARE ENGINEERING PROCESS (AC-8)	� GOTOBUTTON _Toc394997610 � PAGEREF _Toc394997610 �
4-4
��
4.3.1 Reuse Enhanced System Engineering Process Model	� GOTOBUTTON _Toc394997611 � PAGEREF _Toc394997611 �
4-4
��
4.3.2 Reuse Centric Software Development Process	� GOTOBUTTON _Toc394997612 � PAGEREF _Toc394997612 �
4-5
��
4.3.2.1 Software Requirements Analysis	� GOTOBUTTON _Toc394997613 � PAGEREF _Toc394997613 �
4-6
��
4.3.2.2 Component Search and Evaluation	� GOTOBUTTON _Toc394997614 � PAGEREF _Toc394997614 �
4-6
��
4.3.2.3 Component Tailoring and/or Development	� GOTOBUTTON _Toc394997615 � PAGEREF _Toc394997615 �
4-7
��
4.3.2.4 Component Reuse Library Integration	� GOTOBUTTON _Toc394997616 � PAGEREF _Toc394997616 �
4-7
��
4.3.2.5 System and Reuse Components Integration	� GOTOBUTTON _Toc394997617 � PAGEREF _Toc394997617 �
4-7
��
4.3.2.6 Integrated System Test and Certification	� GOTOBUTTON _Toc394997618 � PAGEREF _Toc394997618 �
4-7
��
4.3.2.7 Provide Operational Support	� GOTOBUTTON _Toc394997619 � PAGEREF _Toc394997619 �
4-8
��
4.4 ENVIRONMENT OPERATIONS PROCESSES (AC-2, AC-4, AC-5)	� GOTOBUTTON _Toc394997620 � PAGEREF _Toc394997620 �
4-8
��
4.4.1 Define repository and network resource requirements (HW/SW)	� GOTOBUTTON _Toc394997621 � PAGEREF _Toc394997621 �
4-8
��
4.4.2 Define Database Scheme	� GOTOBUTTON _Toc394997622 � PAGEREF _Toc394997622 �
4-9
��
4.4.3 Define Component Cataloguing Requirements and Processes	� GOTOBUTTON _Toc394997623 � PAGEREF _Toc394997623 �
4-9
��
4.4.4 Define Repository Query/Retrieval Process	� GOTOBUTTON _Toc394997624 � PAGEREF _Toc394997624 �
4-9
��
4.4.5 Environment Operations	� GOTOBUTTON _Toc394997625 � PAGEREF _Toc394997625 �
4-10
��
5. MANAGING THE REUSE PROCESS	� GOTOBUTTON _Toc394997626 � PAGEREF _Toc394997626 �
5-1
��
5.1 ORGANIZATIONAL DATA FLOW	� GOTOBUTTON _Toc394997627 � PAGEREF _Toc394997627 �
5-1
��
5.2 INSTRUMENTING THE PROCESS (AC-6)	� GOTOBUTTON _Toc394997628 � PAGEREF _Toc394997628 �
5-2
��
5.3 IMPROVING THE PROCESS	� GOTOBUTTON _Toc394997629 � PAGEREF _Toc394997629 �
5-2
��
6. APPENDIX A	A-1
7. APPENDIX B SUGGESTED POLICY	B-1
�

LIST OF FIGURES

� TOC \t "LOF2" \c �Figure 1-1 Reuse Domain Reference Model	� GOTOBUTTON _Toc394997721 � PAGEREF _Toc394997721 �
2-1
��
Figure 1-2 Organization Level Reuse Process Definition	� GOTOBUTTON _Toc394997722 � PAGEREF _Toc394997722 �
2-5
��
Figure 4-2 Reuse Domain Specification Process	� GOTOBUTTON _Toc394997723 � PAGEREF _Toc394997723 �
4-1
��
Figure 4-4 A Reuse Based Application System Engineering Process	� GOTOBUTTON _Toc394997724 � PAGEREF _Toc394997724 �
4-5
��
Figure 4-5 Reuse Centric Software Engineering Process	� GOTOBUTTON _Toc394997725 � PAGEREF _Toc394997725 �
4-6
��
Figure 4-3 Reuse Operations Environment Process	� GOTOBUTTON _Toc394997726 � PAGEREF _Toc394997726 �
4-8
��
Figure 5-1 Organizational Data Flow	� GOTOBUTTON _Toc394997727 � PAGEREF _Toc394997727 �
5-1
��
��

This page intentionally left blank
�INTRODUCTION

Purpose

The purpose of this document is to describe the process activities common to all organizations intent on creating a software factory based on a software engineering approach that maximizes the benefits of component reuse technology. This document identifies and describes Reuse Adaptation and Management (RAM) processes consistent with the Defined level of SEI CMM maturity (Level 3).
Background

In early 1994 Naval Command, Control and Ocean Surveillance Center (NCCOSC) Research, Development, Test and Evaluation Division (RDT&E DIV) (NRaD) convened a Software Reuse Process Action Team (SRPAT) to survey available information and to quantify the benefits of reuse. The SRPAT reported findings that indicated that the reuse benefits in terms of Return on Investment (ROI) could well exceed 4 to 1.
The following table summarizes the findings of the SRPAT. The table combines the key issues of cost, schedule, and quality relative to the level of reusable code employed by a project.

 Reuse Defect Cost Schedule
 Level Reduction Savings Savings
 0% 0% 0% 0%
 16% 11% 13% 5%
 40% 31% 33% 12%
 50% 38% 40% 16%
 65% 48% 52% 21%

The report further mentioned that these figures could well be conservative. A copy of the report is available from the NRaD Software Process Engineering Office (SEPO).
Scope

The processes described in this document provide information and guidance to personnel interested in the development and maintenance of a reuse based software engineering paradigm. The document is focused on developing a reuse perspective within each of the many organizations that form NRaD. The intent of process desriptions included in this document are to provide guidance to the practitioner so that each organization may tailor the processes as appropriate to achieve the economic leverage that the technology presents.
Document Overview

This document is intended to provide an overview of a repeatable process(es) that Reuse Adaptation and Management (RAM) personnel can use in providing RAM support to a project. It describes the RAM process down to project-specific activities.
�This document is organized into the sections listed below.

Section 1 	provides the scope, purpose, and background information.
Section 2 	addresses architectural issues key to defining the technical domain for 	RAM.
Section 3 	addresses issues key to organizing for RAM support.
Section 4 	describes the RAM processes using the following format:

Participants: 	The responsibilities of individuals or groups for accomplishing a process activity.
Entry Criteria: 	The elements and conditions necessary to be in place to begin a process activity. Reading lower level activities assumes that the entry criteria for all higher level activities have been satisfied.
Input: 	Data or material with which a process activity is performed.
Processing: 	Actions to transform an input, as influenced by controls, into a predetermined output.
Output: 	Data or material produced by or resulting from a process activity. It must include the input data in some form. The output title differs from the input title in order to indicate that an activity has been performed.
Exit Criteria: 	Elements and/or conditions necessary to be in place to complete a process activity.
e.	Section 5. 	Discusses issues supporting the management of the process.
f.	Appendix A 	Contains a change request form.
g.	Appendix B	Contains suggested wording for inclusion in a software engineering policy 	document.
Referenced documents

The Software Reuse Process Action Team (SRPAT) Report, NRaD, June 1994
SEI CMM Version 1.1, Software Engineering Institute, 1995
Process Development Guidelines for SEPO Process Definitions, Version 2.0, NRaD SEPO, December 11, 1996.
SEI CMM Reuse KPA draft of January 1997
Reuse Driven Software Processes Guidebook, Version 01.00.01, Software Productivity Consortium, CD-ROM, 1995.

Additional recommended reading on the subject would include:
Reuse Adoption Guidebook, SPC-92051-CMC, Version 02.00.05, November 1993.
�Acronyms and Terms

CM	Configuration Management
CMM	Capability Maturity Model
CMU	Carnegie Mellon University
CRWG	Computer Resources Working Group
DOD	Department of Defense
IPT	Integrated Product Team
IV&V	Independent Verification and Validation
KPA	Key Process Area
MIL	Military
OPD Organization Process Definition
OPMP Organization Program Management Plan
POI 	Program of Instruction
QA	Quality Assurance
SDP	Software Development Plan
SEPG	Software Engineering Process Group
SEI	Software Engineering Institute
SRPAT 	Software Process Reuse Action Team
SQA	Software Quality Assurance
�

This page intentionally left blank
�TECHNICAL FOUNDATIONS FOR REUSE
Architectural Reference Model
A cube has been chosen to illustrate the architectural issues that need to be addressed in defining a reuse domain. These issues are critical in developing an architecture conducive to reuse adaptation. The cube, figure 1, allows us to discuss the problems from multiple views.
�
Figure 1-1 Reuse Domain Reference Model

Our cube shows three primary faces:
The top view reflects an abstraction of our application - a C4I program for example.
The right view reflects an abstract of the layering concept that will be used to isolate applications from the side effects of rapid technological change.
The left view reflects an abstraction of functions necessary to define to implement the concept of the right face.

Right View (Principal Layers)

There are two principal layers in our model; the legacy layer, and the dynamic layer. The Reuse Layer (RL) represents our applications that we intended to perpetuate through reuse and portability - our retained knowledge. They represent the algorithms that are unique applications that we have had to develop, or have been able to re-engineer from Commercial Off The Shelve (COTS), or other governments agencies as Government Off The Shelf (GOTS). These are key to our present, past, and future. More simply put the costs of re-implementing these algorithms to keep the technological pace is beyond our budget domain.

The Dynamic Layer (DL) represents a virtual system that provides a combination of the 'Best of Industry' software/hardware that serves to support the RL applications. This layer is where flexibility is required to maintain currency with technological change, and to insure that an application can operate in a single node or multi-node environment. It is where we can maximize the insertion of COTS technology without destroying our application investment. We let industry system software adapt to the ever changing hardware technology, then we follow the best.

Bonding these layers together will be sets (notice the plural) of Application Interfaces (plural again) that will serve as the glue (i.e
.
, standards) between our application and its supporting dynamic, and no doubt distributed, environment. In effect, these interfaces are the applications (objects/methods) bridges into its operating environment. The project's job will be to provide the binding between an interface set and the underlying technology. In many cases this will be simply a job of selecting the right COTS products. In other cases it will require implementing bridging system software.

The Top View (Application SOURCES)

There are two categories of software components that are seen as forming our applications. Those residing in a domain unique library, and those constructed via GUI technology. To the application the architecture and implementation details of the dynamic layer are irrelevant. Of concern is the specification of the supporting application interface sets.
User Interfaces (UI) are an example of application components constructed from COTS technology. In the COTS arena Open Look and Motif interface styles are supported by libraries and/or 'Visual' compilers that allow the definition of the user interface and supporting bindings. It implies a dependence on the tools (i.e., visual compilers) and libraries (X-Lib) and in this manner the issue is not necessarily reusable components, but rather the required tools and inputs to build the UI.

Reusable application components on the other hand will be acquired from several possible sources:
New development based on new requirements.
Components from another problem domain that share the Virtual System Interface of our application domain.
Re-Engineering and translating components from another system.

The Left View (The Implementation Concepts)

The required interface functionality and associated standards, in both vertical and horizontal planes, can be discussed in the context of the terms presented in this view. Here is seen the hardware layer supporting a variety of systems software components implementing the required application interface, or Application Program Interface (APIs) as has become a defacto term via the National Institute of Standards and Technology (NIST).

Application Interface Categories

For simplicity five categories are proposed as critical to our discussion and understanding. A full analysis would certainly find it necessary to further extend the chosen categories. Such information would best be placed in a reference document addressing implementation in detail, such as the Defense Information Infrastructure (DII) Common Operating Environment (COE). However, the chosen categories are sufficient for understanding the issues related to definition of an API.
Operating System
Data Management and Exchange
Networking Support
Graphical Support
User Interface

'State of the Practice' Application Program Interfaces

There are two basic approaches to APIs that are employed in the market today. The first is to bundle accepted interfaces and have the application make direct service requests through the interfaces. This means only those products that support the specified interfaces are candidates for selection. This standards selection represents the definition of a COE. This approach is prevalent within DoD.

Another philosophy is to define a domain interface grammar whose services are mapped to the 'best of industry' products for each category. In this manner the selection of specific industry interface standards is irrelevant. The system programmers will be responsible for the mapping of the 'virtual' interface to the latest technology for OS, netware, graphics, data management, and windowing support. European defense contractor's use this approach for their CDS support approach.

Both approaches have been successfully employed, and in fact a mix and match approach cannot be ignored. The following paragraph presents an overview of one example of a COE guidance.

The Joint Technical Architecture (JTA)

The Joint Technical Architecture (JTA) is a document that identifies a common set of mandatory information technology standards and guidelines to be used in all new and upgraded Command, Control, Communications, Computers, and Intelligence (C4I) acquisitions across DoD.
Version 1.0 of the JTA, published 22 August 1996, can be viewed on the World Wide Web at http://www.itsi.disa.mil/jta/.

In developing the JTA, the participants were able to benefit from ongoing related technical efforts within the DoD. Among these other efforts are: The Technical Architecture Framework for Information Management (TAFIM), the Defense Information Infrastructure (DII) Common Operating Environment (COE) as documented in the Integration and Runtime Specification (I&RTS), and others from the Air Force, the Navy, the Marine corps, and emerging Intelligence Community Standards, Conventions and Guidelines.

TAFIM, the most eminent among those referenced, provides general guidance and documents the processes and framework used in defining the JTA. The TAFIM applies to many DoD mission/domain areas and lists all adopted information technology standards that promote interoperability, portability, and scalability. More on the TAFIM can be found at URL http://www-library.itsi.disa.mil/tafim.htm.

The JTA currently focuses on C4I requirements as related to interoperability by identifying the minimum set of standards for service areas (one standard per function where possible). For the C4I service areas domain, the JTA set of standards supersedes those listed in the TAFIM. The TAFIM Volume 7 should be used as guidance for standards in areas not addressed by the JTA. In a like manner, the DII COE is a specific implementation, an Application Entity, of the TAFIM technical architecture.

Relating the JTA to our simplified model we find the following standard interfaces applied to the models interface categories:
Operating System	POSIX
Data Management and Exchange	SQL
Networking Support	CORBA
Graphical Support	PHIGS
User Interface	MOTIF

This represents a simplification of the JTA specification. The full definition of the interface standards that would create the JTA's API Is contained in the Section 2 of the specification. (URL http://www.itsi.disa.mil/jta/).

The Need for an Object Based Paradigm

The focus on objects, vice algorithms, is a fundamental building block for program development has provided an avenue to the reuse of software engineering artifacts. Key characteristics of the object based approach to program development serve to facilitate the reusability of components conforming to that paradigm. These key characteristics of the object based approach are:

Abstraction	A simplified specification of a system, or system component.	
Encapsulation	Hiding the implementation details
Modularity	The clustering of related abstractions
Hierarchy 	The ranking, or ordering, of the abstractions
Abstraction, and encapsulation, are the most important consideration when developing for reusability. Historically programs were developed using a concept of a hierarchy of algorithms referencing (i.e, coupled) to a centralized data representing the knowledge on the state of the system. This coupling created an interdependency of system components that limited the use of any algorithm to the domain that shared that centralized data. In effect, creating very limited reuse domain. Abstraction and encapsulation uncouples the algorithms from its centralized data stores dependency and places that algorithm within the boundaries of its abstract object. In this manner the abstract object is able to have an expanded domain for the reuse of its functionality.

A considerable amount has been written on the subject objected based program development and this document is not the place to explore the subject. However, time invested in learning the concepts will enhance the practitioner's ability to define the implementation standards and practices necessary to create the largest possible reuse domain.
reuse approach overview

Figure 1-2, represents a process description for the implementation and management of reuse technology from an organization perspective. This process definition is a modification of the SEI's prototype CMM Level 3 Reuse Key Practice Area. The following sections divide the prototype KPA for Reuse into three distinct sub process definitions, that will cover the spectrum of proposed key practices from the required inputs to the process (CO-1,AB-1 through AB5, AC-1 and AC-7) in Section 3, to the engineering activities (AC-2 through AC-6, AC-8 and AC-9) in Section 4 and Section 5.

To assist the reader in relating the key practices of the prototype Reuse KPA of the SEI CMM to the process definitions presented in balance of this document parenthesis will be used in section headers and table entries to encapsulate the referenced key practice. For example:
Organizational Policy (CO-1)
Indicates that the Commitment (CO) key practice, sub practice (1) of the prototype KPA is addressed in the associated discussion. The acronyms for Organizational Process Definition are as follows:
	Key Practice	Acronym
	Commitment		CO
	Ability		AB
	Activity		AC
	Verification		V
	Measurement		M

Participants: Organization Senior Management, Organizational Entity Managers, Senior Systems Engineers, Test Management, CM, QA, Senior Software Engineering Staff Members, and Organizational Software Engineering Process Group.

Entry Criteria: Organizational Commitment

INPUTS�KEY PRACTICES�OUTPUTS��Organizational Reuse Policy (CO1)�Develop a Reuse Business Plan (AC1)�Organizational Reuse Business Plan��Group Designated to Maintain
Reuse Environment (AB1)�Reusable Components identified, developed, and data based per Organization Standard Software Process (AC2) (See also OPD)�Domain specifications��Adequate Resources allocated to Operate Reuse Environment (AB2)�Project Specific Reuse Plans Developed (AC3) �Standard Reuse Environment Operating Processes.��Project specific Reuse Engineers
Designated (AB3)�A Reuse Environment with supporting tools, database, and library is established and maintained to facilitate id, retrieval, utilization. (AC4) (See also OPF)�Standard Processes for component acquisition via development, adaptation, and legacy re-engineering.��Reuse Group and Engineers receive required Environment Process and Maintenance Training (AB4)�Component changes subject to CM analysis (AC5)�Configuration Managed Reuse database and library of Domain Components and Component Related Engineering Artifacts��Engineering staff receives Reuse Centric Software Engineering Process Training (AB5)�Utilization analysis is performed to track actual versus planned and determine process improvements. (AC6)�Standard Reuse Centric Software Engineering Process. ���New technologies and domains are analyzed for possible domain expansion (AC7)�Fully Integrated and Tested Customer Application Systems
���Reuse Centric Software Engineering Process defined and applied to Application Development (AC8)����Establish Reuse Domain Specifications (AC9)���Figure 1-2 Organization Level Reuse Process Definition

Exit Criteria: SEI CMM Level 3 Compliant Reuse Centric Software Factory
�

This page intentionally left blank

�ORGANIZING FOR REUSE
Establish Plans and Policy

Organization Domain Analysis (AC-7)

The first activity in adapting reuse technology is the analysis of the organization and its business domain. The objectives of organization domain analysis is to establish the viability of a domain based on existing systems, planned developments, and the economics of that business segment. The scope of the business domain is a decision based not only on the technical aspects of existing systems within the organization and evaluations of available expertise; but, also on future business opportunities of the current and/or future product line. Domain analysis should be a recurring event to allow for the expansion of the domain.

Another important activity of this domain analysis is the formalizing of the domain in order to standardize and leverage knowledge of how recurring and varying problems from previous and current projects affect the form and content of products for the targeted customer's requirements. The consequence of this formalization process will be a standardized software engineering process and work product family of artifacts to support the development of systems for the target customer base. These work product artifacts will need to be managed, and evolve in a repository that will represent the domain knowledge perceived relevant to the organization's business future.

In addition, there will be the requirement to establish the organizational entities, with their matching responsibilities, to facilitate the maintenance and constant improvement of the means of production, distribution, and customer support.

Plans, Policies, and Procedures (AC-1)

There is more to the adaptation of reuse technology to the production of software intensive systems than an understanding of the technical environment within which reuse may occur. Management must look at reuse as a business decision from the perspective of the market place for the organization's products and how to structure the organization to leverage the benefits of reuse to build quality products as quickly as possible.

Having defined the domain, management needs to develop plans that characterize the domain by documenting its scope (i.e., classes of systems, characteristics, target customers), how included systems are distinguished from one another, and schedules for domain growth. The plan should Identify and specify work product families appropriate for the domain and susceptible to reuse. You need to ensure that these families are useful when application engineers develop systems for the customer's applications. Management establishes domain objectives for the organization to guide the creation and revision of the domain. As such this plan will be the basis for judging the qualitative and economic characteristics of the domain and to determine whether the domain as defined is meeting its economic goals.

You must determine whether reduced development effort arising from reuse will be sufficient to justify the cost of automating. That cost may include the acquisition of software tools and hardware for application engineering projects, as well as the development resources (both time, people, and material) from your organization. Additionally, you must also consider the costs of maintaining and enhancing this automated support.

The above activities should result in the development of a Business Plan for the organizations reuse domain.

In addition, policies will need to be developed to control how the work products for a system needed by customer's application are managed, acquired, developed, integrated, tested, and/or distinguishable from work products of other systems.

Standardized conventions and procedures for using and for developing the reusable work products must be established. There must be documented processes on how application engineers can perform reuse based on the descriptions of the reusable artifacts. Prescribed practices and procedures should encompass administrative, software development (e.g., requirements and design methods, coding and documentation standards), project management and control, reusable artifact management and control, and quality assurance (e.g., testing, walkthroughs, and review procedures).
Assign Responsibility

A key concern of management is coordinating domain engineering activities to support the needs and priorities of application engineering projects in satisfying customers' needs and in achieving the overall objectives of the business plan. To that end responsibility for key activities must be established.

Define intra-organizational requirements by position

Domain Management attempts to ensure effective use of allocated resources by coordinating its planning to match the needs of a targeted application engineering project assists the management of targeted application engineering projects to create plans that ensure optimal leverage from the domain and to identify enhancements needed by the projects for inclusion in timely increments of domain evolution.

The Software Engineering Process Group

The development and maintenance of the organization's standard software processes and related process assets should be performed or coordinated by a group designated as responsible for the organization's software process activities. Typically this activity is assigned to a Software Engineering Process Group (SEPG) to serve as the configuration managers for the standard software processes. The SEPG processes changes proposed for the organization's standard software ensuring that they are documented, reviewed, and approved before they are incorporated into the library of standard software process. This activity also applies to tailoring guidelines and criteria to be used in developing project specific versions from the organizationís standard reusable processes and engineering artifacts. The role of the SEPG and standard process definition and management is the subject of the SEI CMM Level 3 Key Process Area for Organizational Process Definition (OPD) and Organization Process Focus (OPF). (See reference e).

Domain Manager

The domain manager is responsible for the specification of domain standards, management of reusable components within the domain, the developing of documentation and training courses for the software engineering processes and software tools needed to develop customer applications in the host environment. The host platform is the hardware/software environment in which the automated portions of the reuse centric software engineering process would execute. In the context of NRaD, this role could be either a responsibility of a Division Head, or a staff function to a Division Head.

The domain manager must be have domain knowledge and experience in how application engineers resolve issues in constructing work products in the domain, the concepts and structures by which domain members communicate the technical issues of product development in the domain, how to develop and communicate process standards in a concise and usable form, software production processes, and the use of specified standard tools and technologies that support the reuse centric software engineering process (e.g., producing code/documents/tests, simulation/modeling).

Sub Domain Managers (AB-3)

The sub domain manager is responsible for a specific project, its planning and specification through adaptations of domain standards, i.e., deriving a Software Development Plan from a process standard template. The sub domain manager directs the utilization of reusable components from the domain in building a customer product, developing system specific documentation , and end user training courses for the customer applications on the target platform. The target platform is the hardware/software environment in which the customer's system would execute. In the context of NRaD, this role could be either a responsibility of a Branch Head, or Group Leader.

The sub domain manager must be knowledgeable in both the domain and sub domaine on the experience of staff engineers resolving issues in constructing work products in the subdomain. The sub domain manager will communicate with the domain manager and other domain members on the technical issues of application development within the domain.

Reuse Resources Systems Administrator (AB-1)

A system administrator should be designated as responsible for the control, access, and hardware/software maintenance of the organization's standard software process tools and host hardware resources. Host system resources and related process assets should be coordinated by the group headed by the system administrator.
Ensure Adequate Resources (AB-2)

A domain's engineering environment consists of the automated mechanisms that support the reuse centric software engineering process. This includes the mechanisms that create the application engineers' view of the organization of the reusable components and those tools used to query and retrieving the components in the host environment. The costs for these activities is the responsibility of the organization's management. These costs can be shared through the development of an individual Software Development Planís (SDP) for each project, tailored from the organization standards, incorporating the funding requirements to the sponsor. The associated costs of the reuse engineering environment operation would not be a separate line item but integral to each of the development activities. Through the maximum application of reuse the overall cost to the sponsor should be so advantageous that no other source for product development would seem reasonable. Approval of the SDP by the sponsoring organization would constitute a contractual agreement on cost, schedule, and product content, between all the stakeholders associated with that project, and its parent organization.�xe "requirements management: resources and funding for"�
�Provide Reuse Engineering Training (AB-4, AB-5)
The individuals who develop, maintain, and use the organization's reusable engineering artifacts, associated, software engineering process, and related process assets must receive training�xe "training: organization process definition"� to perform their responsibilities.

For example, an Application Engineering User's Guide and related course would provide a detailed description of how application engineers can use the Reuse Engineering Process Support Environment to exploit reuse opportunities. This guide expresses the decision-making process that application engineers follow in querying the reuse database and integrating systems into their application. The guide would instruct application engineers on how to build applications that have particular characteristics and explains how to create, interpret, and evaluate information in the reuse database. In addition, the manual would describe how to recognize reuse opportunities and how to select, adapt, and compose reusable components of a work product family to exploit reuse opportunities. This guide also designates and explains the effective use of the environment tools that support the process. Other candidate issues to include in a course and/or manual could be:

The principles and use of appropriate software development methods.
Human-machine interface factors and related technology.
Database technologies supportive of computer-aided software engineering.
Host platform capabilities.

The Application Engineering User's Guide, training courses, and related material should conform to the organization's standards and guidelines for documentation.
�REUSE PROCESS DEFINITION
organization level reuse process

There are three major process divisions supporting the development and maintenance a reuse domain. Each will be discussed in the following sections.
domain standards specification process (AC-1, AC-3, AC-9)

Participants: Software Engineering Process Group, Senior Software Engineering Staff, Senior Test Management, Organizational Entity Management.

Entry Criteria: Organizational Business Plan, Management Commitment

INPUTS�PROCESS�OUTPUTS��Understanding of Product Lines from a functional perspective�Define Architectural Reference Model�Architectural Reference Model��Understanding of Customerís Host Computer Base�Define API�API Specification��Management Commitment�Define SW Engineering Standards�Programming Standards for Requirements, Design, Code, and Unit Test���Develop Reuse Centric SW Engineering Process�Reuse Centric SW Processes���Develop Individual Project Plans�Project SDPs��
Figure 4-2 Reuse Domain Specification Process

Exit Criteria: Commitment by all stakeholders.
The reuse domain is bounded by the scope of acceptance of the specified standards. These standards include the reference model, the API, software engineering processes, component characteristics, use of the tools and techniques for both the cataloguing and system integration of reusable components, system test approach, and related software engineering practices.
The Domain Reference Model

Section 2 of this document provides a description of the technical foundation required to establish a reuse domain. Each domain must define, or select, its architectural reference model to provide the framework for application development from domain compliant components. A good example of an architectural reference model is found in the Technical Architectural Framework for Information Management (TAFIM) (http://www-library.itsi.disa.mil/tafim.html), and even more specific to the C4I community in the Joint Technical Architecture (JTA) (http://www.itsi.disa.mil/jta/)

The API

The Application Program Interface (API) presents each component with a standard interface for critical services required in performing its function. Interoperability of components between domain compliant applications is accomplished by creating what could be called a plug and play environment for individual shareable components. A good example of an API definition can be found in well defined Common Operating Environments (COE) such as the Defense Information Infrastructure (DII) COE (http://spider.osfl.disa.mil/dii/diicoe.html).

Define Domain Software Engineering Standards

Creation of the standards and procedures that institute a standardized application development process is critical to the establishing the reuse domain. These standards should be documented and available in an interactive media. The purpose of these standards is to promote a consistent approach in the development of application products. The standards should include the essentials of the reuse application engineering process including what has to be done, why, and who completes the work. You should provide procedures that explain how to complete the process (the sequence of tasks or task steps that have to be performed), when the work is performed, and the criteria for measuring the quality of the work. Further, there is a need to create a supporting training course for application engineers which instructs them on how to perform every aspect of application engineering. This courseware should be sufficient for experienced application engineers to understand and follow the processes routinely (i.e., without assistance after initial training) and effectively. Within this description, explain effective use of the automated mechanisms provided by the reuse engineering environment.
The following should be considered in defining process standards:
Present, in as much detail as possible, a description of how application engineers would locate and generate work products in the reuse engineering support environment. Try to describe reuse as a series of steps that application engineers can follow. Do so in terms of any procedures and standards your organization has for performing a given activity. Describe reuse of a work product as a procedure, i.e., a set of steps to follow. Make each step of reuse as mechanical as possible. This will help you eliminate ambiguity and determine which portions you can automate.
Provide an overview that helps application engineers understand the types of work products in the domain. You can draw on the components of the domain architecture specification for this overview.
Describe what the application engineer should do when confronted with a problem during application development. Include descriptions of common mistakes and known bugs (and corresponding work-arounds).
Describe a decision model to clarify the decisions the application engineer must make to identify candidate sub domain component members. Incorporate engineering judgment and domain knowledge that domain experts would use to formulate a set of answers.
In a addition, such a document identifies and prescribes standards for form and content of application engineering work products. Standardization on form and content is critical to allow the building of tools to allow staff engineers to interactively browse the reuse library for candidate components and to allow automated generation of potential customer required documentation such a requirements and design specifications. A discussion on issues related to standards on content are presented in the following paragraphs.
�Requirements

Define an application modeling notation for communication of system requirements and constraints among customers and application engineers through out the reuse domain. Each component in the reuse library should have its requirement specification as an integral part of its library record. The requirements notation must accommodate aspects appropriate for use by the domain's sub domain (such as functional [e.g., behavioral] and nonfunctional aspects [e.g., size, timing, fault tolerance, hardware architecture, hardware/software configuration]) so that the application engineer can adequately express his needs and customer requirements. This notation should be based on existing (formal or informal) notations understandable used by domain and sub domain engineers. Ensure that the notation is precise enough to be used as a source for mapping into exact system solutions. Create standardized requirements for the domain. This description must establish both the common and variable aspects of the behavior and constraints of product family members. An unambiguous specification of requirements is needed so that sub domain implementers can determine what functionality a component brings to an application system.

Design

Like requirements there is a need to create a standardized design notation for the reuse library components. Component designs should provide detailed interface information that will help application engineers determine whether they can use a given component in their work product.
The objective of this standardization is to be able to construct a sub-domainís application design representation in a consistent notation that can be communicated with domain, sub-domain, and possible customer engineering staffs in meeting customer requirements.

Code

The requirement for consistency of notation extends to the development of the code bodies themselves. The reuse domain should share a common set of programming standards defining language constraints, form, and content of the code packages. For example, the requirements notation and design notation could well be placed in a preamble to a code module implementing a reusable component. This technique would support the development and use of library browsers used by the application development staff to search for candidate components. The issue of programming language standards is critical. For example, there are over 26 dialects of the C programming language. Even with advent of an ANSI Standard specification programming language constraints will need to be strictly enforced. In the past many compilers have claimed conformance to an ANSI standard; however, the vendor has provided extensions to the standard, or specified variant language feature implementations. Use by the application staff of any language feature not transferable across a multitude of compilers for a specified language defeat the required transportability and interoperability needed for the reuse domain. The issue of standard language specification is extended to the operating system interface. Once again their are dialectual difference and application development targeted for reuse across multiple platforms and host operating systems of the same generic name (i.e, UNIX) will require strict enforcement to ensure compliance to the specified syntax. Programs written in C, or C++, using a specific operating system interface are married to that operating system interface. Programs written in Ada have an independence from the underlying operating system may enjoy being transported to target environments using different operating systems. It is advised that source analysis tools be developed to enforce programming standards, particularly with respect to language constraints and operating system interfaces.

�Test

Each reusable software component in the reuse library should include in its database entry a unit test body. The purpose of this test body is to verify that the component meets its accompanying requirement specification. Further, it will allow the potential user further information on the components performance profile. This test sequence could be static in nature to allow execution in the interactive development environment rather than having any special hardware requirement. To accomplish this the test should be scripted as a static test driver conforming to the language and operating system interface constraints of the domain. In effect, a compliant component in itself with proper requirement specification, design representation, and conforming to coding conventions.

Define Reuse Centric Software Development Process

A critical activity is the definition and documentation of reuse centric software engineering processes describing the sequence of steps for an application development. A discussion of a prototypical reuse centric software engineering process is found in Section 4.3 of this document.
As with all standard processes, once documented, they should be subject to configuration control.

Develop a Project Plan

Each project should be required to develop a Software Develop Plan (SDP). The SDP should comply with current direction in terms of form and content. SDP's contain the traditional information on schedule, the applications technical content, software engineering standards and processes, etc. Much of the information required in the SDP can be extracted from the organizationís library of standard processes. In addition, the SDP should identify candidate reusable components, components that may be tailored, new components that will be developed, and any project unique software. This information should be profiled as percentage totals and will serve as planning figures for each implementation and provide important data points on the growth and success of the reuse domain.

reuse-centric software engineering process (AC-8)

Development of a customers application would commence with systems engineering activities that would involve defining the overall system requirements. The requirements definition activity collects, integrates, specifies, relates, and organizes the project's needs and objectives to provide the foundation for system design and implementation. In addition the system engineering activity would , based on the system requirements and reuse domain standards and specification identify a system-level architecture, including the allocation of requirements to hardware and software components, that satisfy the system requirements within budget and schedule constraints.

Reuse Enhanced System Engineering Process Model

Figure 4-4 shows a prototypical process for Reuse Based System Engineering. It is recognizable as a conventional development process and therefore straightforward to tailor to the needs of your organization. Reuse within this process is entirely localized to focus on rapid production individual application engineering work products.

� EMBED Word.Picture.6 ���

Figure 4-4 A Reuse Based Application System Engineering Process

The processes that support this model should be documented to create a normal process for developing a work product for the application engineers and to help them locate and reuse existing work products. In addition, the organization should provide automated mechanisms which support the effective and correct performance of the reuse-related activities of application development for the targeted project.

Reuse Centric Software Development Process

On the completion of the allocation of requirements to software, development of the required system software functionality can commence. Figure 4-5 represents the process activities related to reuse centric software development.

Participants: Software Engineering Process Group, Senior Software Engineering Staff, Senior Test Management, SQA

Entry Criteria: Domain Specifications
�
INPUTS�PROCESS�OUTPUTS��Architectural Model�Software Requirements Analysis�Updated Components��SW Engineer Standards�Component Search and Evaluation�New Components��API Definition�Component Tailoring/Development�Customer Ready System��Reuse SW Processes�Component Reuse Library Integration�Process Change Proposals/TRs��Project Specific Requirements�Project Unique Software Development�Component and system unique CPs and TRs.���System and Reuse Components Integration����Integrated System Test/Certification����Provide Operational Support���
Figure 4-5 Reuse Centric Software Engineering Process

Exit Criteria: Commitment by Stakeholders

Software Requirements Analysis

This activity analyzes the system requirements and architecture to further clarify software requirements. Requirement management is an SEI Level 2 Key Practice Area and the organization's standard requirements management process should be applied. Careful cataloguing of the requirements will assist in the analysis of the reuse domains available components. Accurate requirement data is essential to allow an engineer to identify work product families, or family, that might directly contribute to his application. If the engineer cannot find a suitable member of the work product family, that requirement may need to be satisfied by creating a new component or may require development of project unique software.

Component Search and Evaluation

With the architectural reference model as a guide, this activity serves to identify the source of the code that will populate the software system's functional areas. A decision model can be documented to assist the application engineer in determining the selection and tailoring of components into a structure that fill in parts, or all, of the customer's application internal structure. It is during this activity that the origin of the software that will comprise the customers application will be determined. This analysis is critical to identifying the planned levels of reuse that should be documented in the SDP. The organizationís reuse domain is not the only source of components for an application. Reusable components for a domain can be tailored from modules found in legacy systems. In addition, the reuse domains of other organizations can be searched, components extracted and tailored to conform to the organization's standards. Finally, this activity will help identify new components that may need to be developed and added to the domain.

�Component Tailoring and/or Development

Components can come from legacy system, another reuse repository, in either case requiring tailoring for inclusion in the reuse domain library. In some cases the component must developed in total. In all cases the component must comply with standards on form, content, and quality prior to being considered a legitimate member of the reuse library. The following issues should be addressed in the process preparing a component for inclusion in the library.

Component Design Consideration
A reusable component is uniquely named and consists of two parts: an adaptability interface and a body. The adaptability interface is a specification of a set of adaptation parameters that provide for the characterization and extraction of a particular instance of a component family. The body is the implementations of the functionality of the component. All components should comply with the design standards established for the reuse domain.

Component Development
Development of the component itself must be accomplished in accordance with established standards as addressed in Section 4.2 of this document. Any components drawn from legacy systems and/or reuse libraries of other organizations should be re-engineered to ensure compliance with the organization's standards.

Component Reuse Library Integration

Prior to inclusion of a new, or tailored, component into the organization's reuse domain library the SQA staff should generate a representative instance of the reusable component and test that instance in a conventional fashion to see if it operates correctly. One part of this activity is the creation of test case scenarios that can be used in regression testing of the components when they are modified in the future.

System and Reuse Components Integration

This activity integrates the software components, and any project unique software, into larger software configuration items through an incremental process of adding software components to grow the core of software into the finished system. In this manner a customer's application is an implementation of a family of components. This family is defined by its requirements, a design, and product architecture. This process should be performed in accordance with the organizationës process standards.

Integrated System Test and Certification

This activity verifies the integrated software components fulfill the requirements of the customers application. In addition to the execution by the test organization of established test and certification process there are some key activities that should be included in this process from a reuse perspective. These would include:

SQA should perform rigorous inspection of the customer application. The component design, as well as relevant parts of the product requirements and product architecture, should be verified as being satisfied. The SQA group should evaluate the candidate components that influenced the implementation of the customer application. Comparing the original and final component selections compared to see if and how they differ is needed to verify planned versus actual reuse levels. Use of a candidate component may have been based on assurances that the component selected was based with respect to certain desired properties such as correctness, reliability, and certification. Note, however, that modification of the component can invalidate some of these assurances. It is important to verify that the desired properties are retained when the component is tailor from an existing reusable component.

Provide Operational Support

This activity provides technical assistance in response to customer requests and performs regular maintenance to ensure that the finished system performs efficiently in the target environment.
Operational support would include analyses of the effectiveness of the product for users. Engineers should identify and document any problems encountered and any additional or changed needs revealed as the product is used. In addition, application engineers provide consulting assistance as needed for users to become effective with the delivered system. This encompasses both initial training and subsequent troubleshooting if unexpected behaviors are detected.

environment operations processES (AC-2, AC-4, AC-5)

Creating a Reuse Engineering Environment is a software development task. You must design an environment, implement that design in a programming language (or via equivalent commercially available software technology), and test it to verify that the resulting environment implements the organization reuse centric application development processes. You must provide, at a minimum, enough automation to allow application engineers to access the reusable components. Figure 4-3 presents the key processes required to develop the software engineering environment.

Participants: Software Engineering Process Group, Senior Software Engineering Staff, Senior Test Management, Configuration Control Management, Organizational Entity Management.

Entry Criteria: Reuse Centric Software Engineering Process, SW Engineering Standards, Reuse Environment Budget

INPUTS�PROCESS�OUTPUTS��Commitment�Define Support Network (HW/SW)�Software Engineering Environment��Business Plan�Define Data Base Scheme�Operations Manuals��Reuse Centric Software Engineering Process�Define Catalogue Requirements and Process�Catalogued Components���Define Query/Retrieval Process�Query/Retrieval Mechanism���Environment Operations�Metric reports on utilization, productivity, error rates.��Figure 4-3 Reuse Operations Environment Process

Exit Criteria: Agreement by all Stakeholders

Define repository and network resource requirements (HW/SW)

Modern workstation and upper end personal computers and servers allow for the development of powerful networks that provide a completely interactive environment for the organization. It is important to embrace this technology in order to maintain a ìstate of the industryî computing base. With technology changing in a matter of months careful selection of the underlying hardware and system software will be important to prevent slipping into a technologically unsupportable platform configuration for the reuse support environment. Reduce your up-front development costs by taking advantage of available technology to automate various activities within the infrastructure. Automation, whether specially-built or a commercial tool, can reduce the effort needed during labor-intensive activities. It can also help to reduce or eliminate errors in the process. Another benefit of using automation is to reduce training requirements for the application engineering staff. For example, there are planning and scheduling tools for project management; object-oriented databases and user interface tools that can support requirements specification and design; testing, prototyping, and environment simulation tools for validation; static analysis tools for enforcing programming standards; and system generation tools for application deliverables generation. Some key issues in automating would include:

Use standard, recognized structures in the domain (e.g., for individual software components, an information hiding structure) to organize families. This can simplify browsing among components in complex families.

Consider, as a minimum, automating the specification task of the application requirements activity and the application design activities. These are the core of reuse centric software engineering process and provide the most direct benefits.

Decide what code construction tools (e.g., compiler, linker, debugger) will be used by application engineers to construct customer products. For code components, you must consider factors such as target hardware and operating system and, if different from the host environment, how the code will be tested (e.g., in a host-simulated target environment or directly in the target environment) and created in executable form for the target environment (e.g., cross-compilers).

Define Database Scheme

The database scheme provides the basic structure presented by the reuse engineering environment. You may also want to implement other structures that help application engineers locate and evaluate components. Modern data base technology should the core for the reuse environment. It is important to use the domain architecture as the basis for the database scheme and to create a structure that supports definition of procedures by which application engineers can locate, evaluate, and extract work products. A simple approach is to make each work product family a separate directory under a single root that locates the entire library. If you have several work product families of the same type, you may want to group them together. Each component in the reuse database, or library, should at a minimum contain the following information:

Requirements (testable specifications)
Design Representation
Code Body
Unit Test Code

Define Component Cataloguing Requirements and Processes

The process of entering components into the reuse library should be formalized and place under the control of a group responsible for the configuration management of the reuse library. All the processes supporting the requirements for component submittal, verification, etc. should be documented in the Application Engineering User's Guide.

Define Repository Query/Retrieval Process

Determine how you want application engineers to view the reusable components and how you want them to perform the task of locating, evaluating, and extracting them. The tools you allow them to use influence this view. At a minimum, you can use the native operating system tools to browse and manipulate the file structure specified. All procedures should be clearly documented in the Application Engineering User's Guide.

Environment Operations

The responsibility of the reuse environment's system group would be to serve as the database managers for the reusable engineering artifacts. The system administrator, serving as the configuration manager, processes changes proposed for the organization's host system standard procedures. It is the system administrator's responsibility to insure that all procedure are documented, reviewed, and approved before they are incorporated into the library of standard software process. In addition, the group would develop a system administration manual describing how to install and maintain the application engineering tools for a project. That manual should provide appropriate information on any vendor-supplied software technologies contained in the environment.
�MANAGING THE REUSE PROCESS
Organizational Data Flow

Figure 5-1presents a marriage of the key practices described in Section 4 to an organizational entity, such as an NRaD Division. The roles of each participating group in the reuse domain should be defined in an organizational management plan.
Domain management monitors domain engineering performance to assess progress, ensure proper adherence to plans, and guide needed revisions to the evolution and increment plans based on feedback from the use of domain assets. Management activities would include, but not be limited to, the monitoring of the following:

Defining standards and ensure that the work products conform to these standards.
Assessing the domain's current process, identify areas that need process improvement, and direct the improvement of those processes.
Baseline each increment of the product(s) and control any changes to the product(s).
Direct the creation and maintain the software systems that the application engineers use to develop and test the product(s).
Direct the development, validation, and administration of the training program for the developers and users of the system.

 � EMBED Word.Picture.6 ���
Figure 5-1 Organizational Data Flow
�Instrumenting the Process (AC-6)

Measurement of a reuse process' effectiveness enables management to better control costs, reduce risks, and improve productivity and quality of software. In addition, measurement enhances the objectivity of communication about plans, process development status, and most importantly the effectiveness of the organization's reuse domain standard processes. In short, measurements provide management insight into the effectiveness of the reuse adaptation and management. Measurements that assist in developing this insight would include, but not be limited to:

Reuse System Administrative Staff Hours. This activity involves recording the effort involved in the reuse environment activities. The metric collected and recorded is a person’s effort (hours) for participation in reuse environment related activities, in the capacity of CM, SQA, or training responsibilities. Maintaining a database of this information would allow the software engineering process group to evaluate the reuse operations group costs in relationship to overall project costs. In addition, this data is necessary for the calibration of cost estimating algorithms and the distribution of hours within an estimate to account for reuse system administrative functions as a subset of the overall activities involved in employing the reuse centric software engineering process model depicted in figure (4-1).

Process Effectiveness. A database of statistics on the impact of employing reusable artifacts in a project should be maintained. Baseline information on productivity rates, error rates, and reuse levels from projects not using reusable artifacts need to be compared to the results of projects employing those artifacts. In this manner the effectiveness of the reuse plan can be evaluated a quantifiable basis.

Process Artifact Utilization. This would involve maintaining a record of the frequency of utilization of each reusable component. Include information in standardized reports characterizing the extent that work-product reuse occurred. To the extent possible, the domain managers need to know what kinds of work product components were needed and not found, or will be needed in the subsequent (follow-on) activities of this particular application domain. This is important in performing an analysis as to what items are being adapted, whether they should continue to be placed in the database, or if that item should be made more visible to the projects within the domain.
Improving the Process

The organization's software engineering process group is charged with the responsibility for managing and controlling the organization's process assets. This would include the improvement of the reuse centric software engineering processes and the process supporting the management of reuse support environment. All changes proposed for any of the organization's software processes are documented, reviewed, and approved by this group before they are incorporated. At a minimum the software engineering process group would be responsible for the following functions:

The description of the organization's standard software processes undergo peer review when initially developed and whenever significant changes or additions are made.
The descriptions of the domain reference model undergoes peer review when initially documented and whenever significant changes or additions are made.
Changes proposed for the tailoring guidelines and criteria are documented, reviewed, and approved by the software engineering process group before they are incorporated.
The database of reusable components is reviewed periodically to ensure the integrity of the database contents.
Candidate (software process-related) documentation items are reviewed and appropriate items that may be useful in the future are included in the library (of software-process related documentation).
Revisions made to (software process-related) documentation items currently in the library are reviewed, and the library contents are updated as appropriate.
The utilization of individual reusable components is reviewed periodically, and the results are used to maintain the reuse library contents.
Process related metrics are reviewed to determine trends that would reveal high return process changes, process bottlenecks, identify items for deletion from the reusable component library and related reuse environment operation processes.
Review the company's policies and procedures periodically to determine their currency relevant to the domain.
�

This page intentionally left blank
 �APPENDIX A

DOCUMENT CHANGE REQUEST FORM (DCR)

DOCUMENT: SPI PROCESS, VERSION 2.1, dated 8/19/96 	
TRACKING NUMBER:_______

NAME OF SUBMITTING ORGANIZATION:_____________________________________
__
ORGANIZATION CONTACT:_________________________TELEPHONE:______________

MAILING ADDRESS:__
__
__
__

PROPOSED CHANGE:

RATIONALE FOR CHANGE:

.. Note: For the Software Engineering Process Office (SEPO) to take appropriate action on a change request, please provide a clear description of the recommended change along with supporting rationale.
Send to: NCCOSC, RDTE Division, SEPO, Code D13, 53560 Hull Street, San Diego, CA 92152-5001
or Fax to: (619)553-6249
DCR Form 8/1996
�

This page intentionally left blank

�Appendix B Suggested Policy

1. Purpose
	This policy establishes the requirement for Reuse Adaptation and Management process for software and related product development or maintenance. The goals of this policy are to establish a disciplined, consistent approach to reuse technology implementation and management. The goals are to be accomplished by adherence to a documented, approved set of management standards and procedures.
2. General
	Reuse involves the systematic and disciplined analysis of engineering assets, or families of engineering asets, for use in the development of new applications. Reuse activities are aimed at exploiting an organization's assets in creating an advantage in the marketplace that is beneficial to both the organizations and its customers. Reusable software assets may consist of any variety of work products that lend to meeting the customer's requirements. Such work products could include, but not be limited to, requirements, design, code, documentation, plans, process definitions, and even policies.	
	The adaptation and management of reuse technology involves the application of disciplines related to SEI CMM Levels 2 and 3 KPAs, particularly Organizational Process Definition, Organizational Process Focus, Intergroup Coordination, Integrated Software Management, Software Project Planning, Software Tracking and Oversight, and Software Quality Assurance.
3. Policy
The organization shall develop and maintain a reuse plan which describes the reuse strategy and sets quantitative reuse targets.
Each project shall develop a project plan in accordance with organizational procedures specifying project specific reuse activities, quantitative targets, and the project's activities will be managed to that plan.
Business decisions and technology changes will be evaluated for impact against organizational and project reuse strategies and as appropriate new technology will be introduced to the reuse library according to a documented procedure.
A reuse infrastructure group will be responsible for the maintenance of the reuse infrastructure, its planning, management, and maintenance.
A reuse library and appropriate tools will be established and maintained at the organizational level to facilitate the identification and retrieval of reusable components.
Adequate resources and funding will be provided to implement the organization's reuse strategies.
On each project, responsibility shall be assigned for the acquisition, incorporation, development, and maintenance of reusable components.
Individuals responsible for maintaining the reuse infrastructure shall receive required training to perform their jobs.
The technical engineering staff shall receive training on the reuse engineering processes.
Reusable components are identified, developed, stored, and maintained according to a documented procedure consistent with the organization's documented processes.
Changes to reusable components shall be examined for impact against all affected projects as well as future use of that a component according to a documented procedure.
A group is designed to perform process analysis when measures indicate deviation from project or organizational reuse goals. Corrective action shall be planned and implemented.
Measurements shall be made and used to determine the status of the activities for reuse.
Measurements are made to determine the level of reuse against project and organizational reuse goals.
Measurements on component reuse are maintained to determine the economic impact of the reuse program at the project and organizational level.
Reuse activities are reviewed with project and senior management on a periodic basis.
SQA reviews and audits the reuse components and processes for compliance with established procedures. Deviations are reported and corrective action taken as necessary.

Reuse Adaptation and Management (RAM)
Version 1.0
April 18, 1997

Reuse Adaptation and Management (RAM)
Version 1.0
April 18, 1997

�PAGE �
5-4
�

�PAGE �
5-3
�

Reuse Adaptation and Management (RAM)
Version 1.0
April 18, 1997

A-� PAGE �
2
�

A-� PAGE �
1
�

B-� PAGE �
2
�

B-� PAGE �
1
�

