SOFTWARE DEVELOPMENT FILE (SDF)

1.	MIL-STD-498 SDF definition

A repository for material pertinent to the development of a particular body of software. Contents typically include (either directly or by reference) considerations, rationale, and constraints related to requirements analysis, design, and implementation; developer-internal test information; and schedule and status information.

Per 498, SDFs are established, controlled, and maintained for each Software Unit (SU) or logically related group of software units, for each CSCI, and, as applicable, for logical groups of CSCIs, for subsystems, and for the overall system.

2.	Recommend the following:

A document/software tree should be developed which shows the system hierarchy (the decomposition of the CSCIs and SUs). This “spec” tree would also show logically related groups of SUs. This document/software tree will aid the system administrator/CM manager on how to set up the Software Development Library directories/subdirectories and where to place the SDFs.

A skeleton format should be created for each SDF. The format would include the things a software engineer would need to fill-in as appropriate. See paragraph 3.

To control the SDFs, recommend that the SDFs be placed in the Software Development Library. The CM tool would require the software engineer to check-in and check-out the SDF.

Assign responsibility to a software engineer for each CSCI/SU SDF. Encourage each software engineer to record SDF information in the electronic format of the SDF rather than recording it on paper. It it’s on paper make reference to it. If SDF information already exists elsewhere in another SDF, reference the SDF rather than duplicate the information.

Describe in a process or procedure document how SDFs will be organized, e.g., placement in directories and subdirectories.

To ensure that the SDFs are being updated as required, recommend a periodic review by SQA of the SDFs to ensure that the SDF process is being followed.

3.	Sample SDF Format:

Text in “< >“ means instructions or data to be filled-in.

�
Software Development File (SDF) for <CSCI/SUs>

<Anytime the SDF is changed, enter the following information without deleting prior date/name/reason.>

Entry Date 		<mm/dd/yyyy>

Name 			<name of staff member updating file>

Reason for SDF entry: <provide reason for entering data in this file>

<Check the activity that best describes the current status of this SDF:>

Software Development Activity:

[] Requirements Analysis

[] Design

[] Implementation

[] Unit Test

[] Integration Test

Name of SU: <SU name>

Author(s) of SU: <name>

Description or Abstract of SU: <provide a description or abstract of the SU>

Inputs to SU: <provide names of all inputs>

Outputs to SU: <provide names of all inputs>

Reuse: <reuse status of this SU: % reused; origin of SU; POC of SU maintenance>

Trouble Report Information: TR <number(s)>, TR <title(s)>

Considerations/Rationale: <provide considerations or rationale for the existence of this SU>

Constraints:	 <provide any constraints or conditions subject to using this SU>

References: <provide additional information that is useful in understanding the function, design and implementation of the software and that is not already part of the design documentation, e.g., textbook reference of an algorithm>

Schedule: <provide schedule information or reference where it is located, e.g., refer to project management’s project schedule and Work Breakdown Structure (WBS) >

Status: <provide status information, e.g., status is anything pertinent to the condition of the SU or SUs, for example, % complete, defects outstanding, open issues, etc.>

Design Notes: <any pertinent information that is important for maintenance but does not go under any other heading>

Test Requirements: <Information detailed here is a description of the method which will be employed in verifying that a piece of software executes according to its specification. Include the following:>

	Objective: <List what SU will be tested or list the SUs that will be integrated.>

	Environment: <list the hardware, support software and lab equipment required for testing.>

	Methodology: <Describe the test method to be used for each SU. For example, will SU testing cover all statements, or will some need to be verified during later testing phases? Is a driver needed to execute the SU? Are other SUs needed to act as drivers? If this is an update to a SU delivered for a previous build, what regression testing is required?>

Test cases: <Test cases identifies plans for the actual tests that will be executed to perform the tests outlined in the test plan. Provide which test type the test will exercise:

	Average test - normal execution is tested in this category

	Boundary test - these tests use boundary and out of bounds conditions such as minimum and maximum values

	Stress test - this category tests the component to its performance limits

	String Test - exercise combinations of different functions>

Test procedures: <For each test case, a step-by-step description shall be presented of how to create a test condition, how to execute the test and how to evaluate the results. It will contain the following information:>

	Test Case Name or Id: <specify which test case the procedure applies to>

	Environment: <describe any specific details about how to set-up the environment as outlined in the test requirements>

	Inputs: <List the inputs that are necessary to execute the test. for example, “value x = 10, y = 150, etc.” >

	Expected results: <List the expected results that will be used to evaluate the test. “value z - 3.14159” or “exception overflow is raised”, etc.>

	Step-by-step: <Describe the steps needed to run the test. This includes how/where the results will be obtained.>

	Evaluation criteria: <provide the evaluation criteria needed to determine if the test passed or failed. This may be simple as saying the results of the test must match the expected results or by stating the accuracy that must be achieved for an arithmetic calculation (such as value z = 3.14159 +/- 0.0001).>

Test results: <Pass/fail results of each test executed should be recorded. Include in the test procedures as a pass/fail plus date test ran following the test procedure. Results should include:>

	Test Case: <specify which test case the results refer to>

	Pass/Fail: <using the evaluation criteria outlined in the test cases, specify if the test passed or failed.>

	Date: <give the date the test was run.>

Miscellaneous: <provide design information that will help understand the SU logic>

Software Development File

Version 1.1, 12/10/96

